
Journal OPACJ, No. 3, 2024 http://www.opacj.org

1

Impact of cross platform mobile frameworks on end user
performance. Flutter vs .NET 6

ROBERT-MIHAI CIUREA
POLITEHNICA București National University for Science
and Technology
Facultatea de Automatica si Calculatoare
Specializarea: Calculatoare si Tehnologia Informatiei
Email: robert_mihai.ciurea@stud.acs.upb.ro

Cristian Contasel
POLITEHNICA București National University for Science
and Technology
Facultatea de Automatica si Calculatoare
Email: cristian@hanzu.ro

Abstract
The benchmark study examines the
performance of Flutter and .NET 6 technologies
in mobile application development, focusing on
their impact on user experience. Apps for
managing lost and found animals were created
and tested on Android and iOS platforms,
providing relevant data for evaluation. The
goal is to provide a comparison between cross-
platform development and development with
separate code for each platform.
Keywords: Mobile development, Android &
iOS platforms, cross-platform technology,
performance evaluation

Introduction

With the appearance of the first smartphones, the foundation was laid for the identification
and development of a new field in technology, that of mobile application development. Unlike pre-
installed applications in traditional mobile phones, which offered limited functionality strictly
necessary to establish a basic communication between two or more users, complex systems and
applications are now being discussed. They maximize the capabilities of the devices by offering an
extensive range of functionalities and facilities designed to meet the full spectrum of end-user needs
and preferences.

As the number of users has increased, as shown in Figure 1, so have the difficulties
encountered by software developers in meeting their needs, which have become increasingly
sophisticated. Mobile apps developed these days incorporate more advanced functionality, which
turns development time and related costs into essential elements of the production process. At the
same time, these applications ensure optimal operation, regardless of the platform (Android and/or
iOS) or the technological architecture used by the diversity of mobile devices on the market. These
challenges are highlighted by Dongliang You and Minjie Hu in their paper "A Comparative Study of
Cross-platform Mobile Application Development" [1].

Figure 1. Mobile devices usage from 2016 to 2022 with prediction to 2028

In a comparison between a mobile device and a computer, phones have fewer resources,

whether we are talking about storage space, RAM capacity or processor power, fundamental
elements that can significantly influence the performance of a mobile application if it is not properly
optimized. To facilitate optimization, maximizing efficiency becomes essential, this depends largely

Journal OPACJ, No. 3, 2024 http://www.opacj.org

2

on the desired functionalities to be implemented within the application, but also on the technologies
used, be it native programming languages, frameworks dedicated to a specific platform or
technologies cross-platform, as highlighted in the paper "Performance Evaluation of Mobile
Applications" written by Anita Andonoska and Kire Jakimoski [2].

Given that Flutter and .NET 6 are two of the most popular frameworks in mobile app
development today, they are viable solutions for replacing native implementations that can become
extremely complex as new functionality is added in applications. In this context, these two
technologies were selected to be evaluated from the perspective of their performance in relation to
the end-user experience. The paper will focus on the analysis of the main metrics, to determine
which of these two technologies would be the most optimal for use by developers, depending on
specific circumstances. The analysis will include performance on both platforms, Android, and iOS,
to provide valuable information to help developers choose the most suitable option, tailored to the
needs of the project they are developing.

Defining performance analysis criteria

The execution of one app depends on 4 major aspects:
1) a given software system under execution.
2) a given hardware combination.
3) a given context.
4) a given time. In a mobile setup, the number of execution scenarios is even larger, as

related by Rui Rua and João Saraiva in “A large-scale empirical study on mobile performance:
energy, run-time and memory” [3].

To properly perform a performance analysis from the users' perspective using Flutter and

.NET 6, both for iOS and Android, an application for managing lost and found animals was
developed through which real-time analysis of the metrics was made, the most important being:

1. Execution Time: Measures how long the application takes to complete specific
operations. This is crucial for understanding the app's efficiency and impacts user
perception of speed and smoothness. Directly affects user experience; faster execution
times are typically synonymous with a more responsive app [2]
2. Startup Time: Assesses the duration from app launch to when it becomes interactive.
This metric is essential for first impressions and can influence user retention. Critical for
user engagement; quicker startup times improve satisfaction, especially for frequently
used apps [5]
3. Memory Usage: Evaluates the amount of RAM utilized by the app during execution.
Efficient memory usage is vital for maintaining the device's overall performance and
stability. Impacts the ability of the device to multitask effectively without slowing down
or crashing [2]
4. CPU Usage: Measures the percentage of CPU resources utilized by the application
during its operation. This helps to determine how heavy the application is on a device's
processing power. Essential for understanding how the app manages processing tasks
and its impact on battery life and device heat generation [6].

Each of these metrics offers a unique perspective on the performance and user experience
provided by Flutter and .NET 6, enabling a balanced and thorough evaluation. Implementing these
metrics will provide insights into how well each framework supports the demands of modern mobile
applications, focusing on both technical performance and user-centric outcomes.

Cross-platform mobile applications development approaches.

 Before approaching the model implemented to carry out the tests that aim to provide
relevant data on the metrics that determine the effectiveness of the application in various contexts of
use, it is imperative to examine the technologies used during the actual development. Thus, the
discussion will focus on Flutter and .NET 6, as it is necessary to present fundamental information
about each technology and their specific peculiarities.

1. Flutter: It is a cross-platform UI toolkit created by Google that is designed to allow
code reuse across operating systems such as iOS and Android, while also allowing
applications to interface directly with underlying platform services. The goal is to enable
developers to deliver high-performance apps that feel natural on different platforms,
embracing differences where they exist while sharing as much code as possible [7].
2. .NET 6: It is an open-source platform for building modern and performant
applications (in this document only the mobile view will be taken into consideration) for
iOS and Android. This represents an abstraction layer that manages communication of
shared code with underlying platform code. It runs in a managed environment that

Journal OPACJ, No. 3, 2024 http://www.opacj.org

3

provides conveniences such as memory allocation and garbage collection. Also enables
developers to share an average of 90% of their application across platforms. This pattern
allows developers to write all their business logic in a single language (or reuse existing
application code) but achieve native performance, look, and feel on each platform.
Applications can be written on PC or Mac and compile into native application packages,
such as an .apk file on Android, or an .ipa file on iOS [8].

Analysed model.

To carry out a detailed analysis of the metrics that would provide the necessary information
to evaluate the effectiveness of each framework, the "Find my pet" application was developed, a
solution for the management of lost and found animals. This has been implemented on both
platforms, thus allowing the collection of authentic data in the widest possible spectrum of operating
environments. This approach aims to simulate the experience of an anonymous user at the first
interaction with the application.

The system is intended to facilitate the process of finding lost animals. There will be 2 types
of users, those who have lost their pet and those who have found an unknown animal. The
architecture of the "Lost and Found" system can be structured in several components, as can be seen
in Figure 2:

1. User interface: the component through which users interact with the application. It
should be friendly and intuitive, giving users a nice and easy experience while using the
app.
2. Animal Information Upload Module: includes a form which will allow users to upload
photos and detailed descriptions about the animal with information about the location
where the animal was lost or found.
3. Data Filtering Module: allows users to filter information about lost or found animals
according to specific criteria such as breed, color, gender, location, etc. This module will
use the information loaded into the database and return only the information relevant to
the user.
4. Database management module stores all uploaded information about animals lost or
found. This module includes a database management system data, which ensures quick
access to information and data protection against loss or unauthorized access.

In general, the architecture of the "Lost and Found" system is structured based on a client-

server model. The client component comprises the user interface along with the modules
responsible for loading and filtering information, while the server segment consists of the database
management module, the location module, and the notification module. This structure facilitates
efficient information management, simultaneously guaranteeing optimal performance and a
satisfactory user experience.

Additionally, implementing a relational database supports the process of filtering and
managing information, ensuring data integrity and consistency. Using a modular architecture also
makes application development and maintenance easier. This minimizes dependencies between
system components and provides the flexibility to replace or enhance existing modules without
disrupting the overall system operation.

Journal OPACJ, No. 3, 2024 http://www.opacj.org

4

Figure 2. Decomposition into subsystems and the responsibilities of each subsystem

To conduct a detailed analysis of the performance metrics using the "Find my pet"
application developed with Flutter and .NET 6, the following steps and tools/methods were
approached:

1. Execution Time: Dart DevTools was used for the Flutter application to handle
performance profiling and Visual Studio Diagnostic Tools for .NET 6. Benchmarks for
crucial operations such as loading times, data processing, and response to user inputs
were set, and these times were logged during typical usage scenarios.
2. Start-up Time: For the analysis in question, no significant differences were found at
the level of the evaluation method between the two technologies studied; however, it was
necessary to use specialized tools adapted to the specific operating system on which each
version of the application was running. Thus, for the Android platform it was decided to
use Android Studio, because it includes integrated profiling tools, while for iOS the
native profiling tools available in XCode were applied. To obtain a wide range of boot
time data, repeated launches of the applications were performed, both in cold state and
in warm state.
3. Memory Usage: Tools such as XCode for iOS and Android Profiler, built into Android
Studio, provided detailed information on the memory used by the application being
tested at runtime on various devices.
4. CPU Usage: Both apps used the native CPU analysis systems built into Android
Studio and XCode IDEs (Integrated development environments), respectively. Critical
moments in the app were examined, such as the process of displaying the map showing
lost and found animals. Also, another significant aspect analysed on both platforms and
development technologies was the synchronization with the backend to retrieve all the
processed data, which was then displayed on the map according to the timeline of events
(animals found or lost).

Performance comparison

Device OS CPU RAM
Pixel 5 Android 14 (API 34) Qualcomm Snapdragon 765G 4GB

Pixel 6 Pro Android 14 (API 34) Google Tensor 6 GB
Pixel 4 Android 10 (API 29) Qualcomm Snapdragon 855 3 GB

Pixel 3a Android 8 (API 27) Qualcomm Snapdragon 670 2 GB
Pixel 2 Android 6 (API 23) Qualcomm Snapdragon 835 2GB

iPhone 15 Pro Max iOS 17.0 A16 Bionic 6GB
iPhone 14 Pro Max iOS 16.0 A15 Bionic 6GB

iPhone 13 Pro iOS 15.0 A15 Bionic 6GB
iPhone 12 iOS 14.0 A14 Bionic 4GB
iPhone 11 iOS 13.0 A13 Bionic 4GB

Table 1. Devices used to test the applications.

Journal OPACJ, No. 3, 2024 http://www.opacj.org

5

1. Execution Time

Figure 3. Rendering and Navigation time on Flutter and .NET 6

From the time perspective associated with rendering and navigation between screens, as

shown in Figure 3, Flutter is found to demonstrate superior efficiency compared to .NET on both
Android and iOS platforms. This superiority of Flutter can be attributed to the use of its own graphics
rendering engine, Skia, for drawing widgets. In contrast, .NET 6 opts for the integration of native
components specific to each platform. While this approach can provide a more "native" looking user
interface, it also brings an increased reliance on the efficiency of already implemented native
components. This dependency can negatively influence the response time in the process of navigation
and rendering between screens, thus reducing the overall performance of the application.

2. Start-up time

Figure 4. Start-up time on Android and iOS for Flutter and .NET 6

iPhone 15 Pro Max (iOS 17.0)
Flutter: Start-up time reduces significantly after the first load, indicating the efficiency of

resource management after initialization. A slight increase observed in subsequent runs suggests
sporadic background activity.

.NET 6: Demonstrates consistency in start-up time across different runs, suggesting stable
resource management in iOS with minor variations.

Pixel 5 (API 34)
Flutter: Shows lower initial start-up time with noticeable variation in subsequent runs,

reflecting dynamic management of system-wide optimizations.
.NET 6: Start-up time gradually increases to a maximum point and then decreases, indicating

a more even approach to optimization over successive runs.

General Observations

Journal OPACJ, No. 3, 2024 http://www.opacj.org

6

On iOS: Analysing Figure 4, Flutter seems to perform aggressive optimizations that don't
always guarantee performance consistency, while .NET 6 offers a more balanced and predictable
approach.

On Android: In figure 4, both frameworks show variability in performance, but Flutter exhibits
more pronounced fluctuations, possibly due to the complex interaction with the Android operating
system.

3. Memory usage

Comparing the memory usage between Flutter and .NET on Android and iOS platforms, as are
presented in Figure 5, it is observed that .NET experiences lower and more stable memory
usage on both operating systems. On Android, this suggests that .NET is more efficient at
managing memory compared to Flutter, which can be crucial in applications with strict
memory usage requirements. In contrast, on iOS, .NET demonstrates better memory
optimization across multiple runtimes, indicating more efficient integration with the iOS
platform.

These findings indicate that while Flutter may
offer advantages in rapid UI development and

extended UI functionality, .NET may be
preferred for applications that require minimal
memory usage, especially on iOS devices. Thus,

the choice between the two frameworks
depends on the specific memory management

needs of the application and the target
platform.

Figure 5. Memory usage on Android and iOS

 for Flutter and .NET 6
4. CPU usage

Android platform:
Flutter exhibits high and relatively constant CPU usage, indicating intensive

computation and rendering processes.
.NET shows lower CPU usage, increasing slightly along the way, suggesting superior

efficiency in resource management.

iOS platform:
Flutter starts with low CPU usage, but experiences a significant spike, possibly due to

JIT compilation or intensive rendering tasks.
.NET maintains a consistently low CPU usage, indicating efficient optimization and

integration with the iOS system.

General Observations:
Flutter requires more CPU resources compared to .NET, results presented in Figure 6,

which can influence the choice of technology depending on the specific performance and
energy efficiency requirements of the application.

Journal OPACJ, No. 3, 2024 http://www.opacj.org

7

.NET offers more moderate
CPU usage on both platforms, an
important advantage for applications
that require battery conservation and
reduced hardware impact.

Figure 6. CPU usage on Android and iOS for Flutter and .NET 6

Conclusions
The study analysed the performance of two popular mobile application development

frameworks, Flutter and .NET 6, focusing on their influence on end-user experience. The analysis
results show notable differences between the two technologies in terms of runtime, start-up time,
memory usage, and CPU consumption on both Android and iOS platforms.

Flutter has demonstrated superior efficiency in terms of running speed of applications on
both platforms, possibly due to its proprietary rendering engine, Skia, which optimizes the drawing
of widgets. .NET 6, using native components of the platforms, while providing a user interface that
feels more "native", can suffer from dependence on the efficiency of already implemented native
components.

.NET 6 showed more consistent resource management on iOS, with stable start-up times,
while Flutter showed initially shorter start-up times on Android, but with noticeable variation in
subsequent runs, indicating dynamic management of level optimizations of system.

Lower and more stable memory usage was also more consistent in .NET 6 framework on
both platforms, suggesting more efficient integration and optimization with operating systems. This
is crucial in applications where strict memory usage requirements are essential.

Flutter experienced higher and relatively constant CPU usage, which indicates compute and
rendering intensive processes. On the other hand, .NET 6 showed lower CPU usage, increasing
slightly along the way, suggesting superior efficiency in resource management.

How to Decide Between Flutter and .NET

Choosing between Flutter and .NET depends on several project-specific factors:
1. Performance and Resilience:

Flutter is ideal for applications that require high graphics performance and a smooth and
responsive user experience.

.NET is preferable for applications that prioritize power efficiency, stability, and deep
integration with the native platform.
2. Device Resources:

If the application needs to run on resource-constrained devices, .NET may be more suitable
due to its low memory and CPU usage.
3. Frequency of Application Use:

Journal OPACJ, No. 3, 2024 http://www.opacj.org

8

For frequently used applications, the fast start-up time and efficient resource management
provided by .NET can improve user retention.
4. Development Complexity:

Flutter enables rapid and iterative development with a common source code for multiple
platforms, ideal for projects with tight deadlines and limited budgets.

Bibliografie

[1] Dongliang You, Minjie Hu, “A Comparative Study of Cross-platform Mobile

Application Development”, 12th Annual Conference of Computing and Information
Technology Research and Education New Zealand, 2021.

[2] Anita Andonoska, Kire Jakimosk, “Performance Evaluation of Mobile Applications”,
Conference: XIV International Conference – ETAI 2018, Republic of Macedonia,
2018

[3] Rui Rua, João Saraiva, “A large-scale empirical study on mobile performance: energy,
run-time and memory”, Empirical Software Engineering (2024) 29:31, 2024

[4] Andre Luiz Nunes Martins, Cesar A. V. Duarte, Jinkyu Jeong, “Improving Application
Launch Performance in Smartphones Using Recurrent Neural Network”, ICMLT '18:
Proceedings of the 2018 International Conference on Machine Learning
Technologies, 2018

[5] Diya Datta, Sangaralingam Kajanan, “Do app launch times impact their subsequent
commercial success?”, International Journal of Big Data Intelligence 3(4):279, 2016

[6] Thomas Dorfer, Lukas Demetz, Stefan Huber, “Impact of mobile cross-platform
development on CPU, memory and battery of mobile devices when using common
mobile app features”, Procedia Computer Science Volume 175, Pages 189 – 196,
2020

[7] Aakanksha Tashildar, Nisha Shah, Rushabh Gala, Trishul Giri, Pranali Chavhan,

“Application Development using Flutter”, International Research Journal of
Modernization in Engineering Technology and Science Volume:02/Issue:08/August-
2020 Impact Factor – 5.354, 2020

[8] Kumar Vishal, Ajay Shiram Kushwaha, “Mobile Application Development Research

Based on Xamarin Platform“, 4th International Conference on Computing Sciences
(ICCS), 2018

