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Introduction and Preliminaries

▶ In this paper, we present some results about the aproximation of fixed
points of enriched strictly pseudocontractive and enriched
nonexpansive operators. There are numerous works in this regard (for
example [9], [10], [11] [14], [16], [35] and references to them).

▶ In order to approximate the fixed points of enriched strictly
pseudocontractive and enriched nonexpansive mappings, we use the
Krasnoselskij iterative algorithm for which we prove weak and strong
convergence theorems.

▶ Also, in this paper, we make a comparative study about some classical
convergence theorems from the literature in the class of enriched
strictly pseudocontractive and enriched nonexpansive mappings.
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Introduction and Preliminaries

Definition 1 [9]

Let K be a nonempty subset of a real normed linear space X . A
mapping T : K → K is called:

i) nonexpansive if

∥Tx − Ty∥ ≤ ∥x − y∥ ∀x , y ∈ K . (1)

ii) pseudocontractive if

∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥x − y − (Tx − Ty)∥ ∀x , y ∈ K . (2)

iii) strictly pseudocontractive if there exist k < 1 such that

∥Tx − Ty∥2 ≤ ∥x − y∥2 + k∥x − y − (Tx − Ty)∥ ∀x , y ∈ K . (3)

In this case, T is also called k-strictly pseudocontractive.

Liviu-Ignat Socaciu (NUCBM) XGEN 2024 May 17, 2024 4 / 32



Introduction and Preliminaries

Remark 1

Any strictly pseudocontractive operator is Lipschitz continuous ([37]),
like in the case of nonexpansive mappings i.e.

∥Tx − Ty∥ ≤ L∥x − y∥ ∀x , y ∈ K , (L > 0). (4)

An element x ∈ K is said to be a fixed point of T is Tx = x and the set
of fixed points of T is denoted by F (T ).

The notion of strictly pseudocontractive operator in Hilbert spaces has
been introduced and studied by Browder and Petryshyn [14], where the
following result has been established.

Liviu-Ignat Socaciu (NUCBM) XGEN 2024 May 17, 2024 5 / 32



Introduction and Preliminaries

Remark 1

Any strictly pseudocontractive operator is Lipschitz continuous ([37]),
like in the case of nonexpansive mappings i.e.

∥Tx − Ty∥ ≤ L∥x − y∥ ∀x , y ∈ K , (L > 0). (4)

An element x ∈ K is said to be a fixed point of T is Tx = x and the set
of fixed points of T is denoted by F (T ).

The notion of strictly pseudocontractive operator in Hilbert spaces has
been introduced and studied by Browder and Petryshyn [14], where the
following result has been established.

Liviu-Ignat Socaciu (NUCBM) XGEN 2024 May 17, 2024 5 / 32



Introduction and Preliminaries

Theorem 1

Let K be a bounded closed convex subset of a Hilbert space H and
T : K → K be a k-strictly pseudocontractive mapping. Then for any
given x0 ∈ K and any fixed number γ such that 1− k < γ < 1, the
sequence {xn}∞0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (5)

converges weakly to some fixed point of T . If, in addition, T is
demicompact, then {xn}∞0 converges strongly to some fixed point of T .

Remark 2 [38]

A mapping T : K → H is called demicompact if it has the property that
whenever {un} is a bounded sequence in H and {Tun − un} is strongly
convergent, then there exists a subsequence {unk} of {un} which is
strongly convergent, where H is a Hilbert space and K a subset of H.
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Introduction and Preliminaries

Definition 2 [9]

Let (X , ∥ · ∥) be a linear normed space. A mapping T : X → X is
called:

i) enriched nonexpansive mapping if there exists b ∈ [0,∞) such that

∥b(x − y) + Tx − Ty∥ ≤ (b + 1)∥x − y∥,∀x , y ∈ X . (6)

To indicate the constant involved in (??) we shall also call T as a
b-enriched nonexpansive mapping.

ii) enriched strictly pseudocontractive mapping if there exist
b ∈ [0,∞) and k < 1 such that ∥b(x − y) + Tx − Ty∥2 ≤

≤ (b + 1)2∥x − y∥2 + k∥x − y − (Tx − Ty)∥2 ∀x , y ∈ X (7)

We shall also call T as a (b, k)-enriched strictly pseudocontractive
mapping.
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Introduction and Preliminaries

Remark 3

1) [9] It is easy to see that any nonexpansive mapping T is a 0-enriched
mapping, i.e., it satisfies (??) with b = 0.

2) [9] We note that, according to Theorem 12.1 in [25], in a Hilbert
space any enriched nonexpansive mapping which is also firmly
nonexpansive is nonexpansive. T is said to be firmly nonexpansive if
∥T (x)− T (y)∥2 + ∥(Id − T )(x)− (Id − T )(y)∥2 ≤ ∥x − y∥2
(x , y ∈ X ).

3) [9] It is very important to note that, similar to the case of
nonexpansive mappings, any enriched nonexpansive mapping is
continuous.

4) [11] Any strictly pseudocontractive mapping T is a (0, k)-enriched
strictly pseudocontractive mapping, i.e., it satisfies (??) with b = 0.

5) [11] Any b-enriched nonexpansive mapping is a (b, k)-enriched strictly
pseudocontractive mapping for any k < 1.
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Introduction and Preliminaries

Example 1

1) T : [0, 4] → [0, 4], Tx = 4− x , for all x ∈ [0, 4] is nonexpansive and
T has a unique fixed point, F (T ) = {2}.

2) If T : [0, 10] → [0, 10], Tx = 2x − 10, then T is not nonexpansive,
because, for x = 5 and y = 4, then ∥Tx − Ty∥ ≤ ∥x − y∥ ⇔ 2 ≤ 1,
which is false.

3) [9] Let X =

[
1

2
, 2

]
be endowed with usual norm and T : X → X be

defined by Tx =
1

x
, for all x ∈

[
1

2
, 2

]
. Then T is a

3

2
- enriched

nonexpansive mapping and F (T ) = {1}.

4) Let k =
1

10
be a fixed number. Then T :

[
1

2
, 2

]
→

[
1

2
, 2

]
be defined

by Tx =
1

x
, for all x ∈

[
1

2
, 2

]
is a

(
3

2
,
1

10

)
- enriched strictly

pseudocontractive mapping and F (T ) = {1}.
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Introduction and Preliminaries

Definition 3 [14]

Let H be a Hilbert space and K a closed convex subset of H. A mapping
T : K → K is called asymptotically regular (on K ) if, for each x ∈ K ,

∥T n+1x − T nx∥ → 0, as n → ∞.

Remark 4

Throughout this paper, we take H as a real Hilbert space with scalar
product ⟨·, ·⟩ and induced norm ∥ · ∥.
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Weak convergence theorems for enriched strictly
pseudocontractive mappings and enriched nonexpansive
mappings by Krasnoselskij iteration

Theorem 2 [11]

Let K be a bounded closed convex subset of a Hilbert space H and
T : K → K be a (b, k)-enriched strictly pseudocontractive mapping. Then
Fix(T ) ̸= ∅ and, for any given x0 ∈ K and any fixed number γ, such that
0 < γ < 1− k , the Krasnoselskij iteration {xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (8)

converges weakly to a fixed point of T .
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Weak convergence theorems for enriched strictly
pseudocontractive mappings and enriched nonexpansive
mappings by Krasnoselskij iteration

Theorem 3 [9]

Let K be a bounded closed convex subset of a Hilbert space H and
T : K → K be an enriched nonexpansive operator with Fix(T ) = {p}.
Then, for any given x0 ∈ K and any fixed number γ, 0 < γ < 1, the
Krasnoselskij iteration {xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (9)

converges weakly to p.
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Strong convergence theorems for enriched strictly
pseudocontractive mappings and enriched nonexpansive
mappings by Krasnoselskij iteration

Theorem 4 [11]

Let K be a bounded closed convex subset of a Hilbert space H and
T : K → K be a (b, k)-enriched strictly pseudocontractive and
demicompact mapping. Then Fix(T ) ̸= ∅ and, for any given x0 ∈ K and
any fixed number γ, such that 0 < γ < 1− k , the Krasnoselskij iteration
{xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (10)

converges strongly to a fixed point of T .
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Strong convergence theorems for enriched strictly
pseudocontractive mappings and enriched nonexpansive
mappings by Krasnoselskij iteration

Remark 5

Any k-strictly pseudocontractive mapping is a (0, k)-enriched strictly
pseudocontractive mapping. Hence, the next corollary follows from
Theorem 4 for b = 0 , that is, for γ = 1.

Corollary 1 [11]

Let K be a bounded closed convex subset of a Hilbert space H and
T : K → K be a k-strictly pseudocontractive and demicompact
operator. Then Fix(T ) ̸= ∅ and, for any given x0 ∈ K and any fixed
number γ, such that 0 < γ < 1− k, the Krasnoselskij iteration {xn}∞n=0

given by
xn+1 = (1− γ)xn + γTxn, n ≥ 0, (11)

converges strongly to a fixed point of T .
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Strong convergence theorems for enriched strictly
pseudocontractive mappings and enriched nonexpansive
mappings by Krasnoselskij iteration

Theorem 5 [9]

Let K be a bounded closed convex subset of a Hilbert space H and
T : K → K be an enriched nonexpansive and demicompact mapping.
Then the set Fix(T ) of fixed points of T is a nonempty convex set and
there exists γ ∈ (0, 1) such that, for any given x0 ∈ K , the Krasnoselskij
iteration {xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (12)

converges strongly to a fixed point of T .
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Strong convergence theorems for enriched strictly
pseudocontractive mappings and enriched nonexpansive
mappings by Krasnoselskij iteration

Remark 6

Any nonexpansive mapping is a 0-enriched nonexpansive mapping.
Hence, the next corollary follows from Theorem 5 for b = 0, that is,
γ = 1.

Corollary 2 [14]

Let K be a bounded closed convex subset of a Hilbert space H and
T : K → K be a nonexpansive and demicompact operator. Then the
set Fix(T ) is a nonempty convex set and there exists γ ∈ (0, 1) such
that, for any given x0 ∈ K , the Krasnoselskij iteration {xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (13)

converges strongly to a fixed point of T .
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Numerical experiments

▶ For Table 1 and Table 2, let Tx =
1

x
, x ∈

[
1

2
, 2

]
. Then T is

3

2
-

enriched nonexpansive operator and F (T ) = {1}. According to
Remark 3, 5) any b-enriched nonexpansive mapping is a
(b, k)-enriched strictly pseudocontractive mapping for any k < 1.

▶ We choose in our examples, k =
1

10
. Hence, T is

(
3

2
,
1

10

)
- enriched

strictly pseudocontractive mapping.

▶ It is easily seen that the Krasnoselskij iteration converges to x∗ = 1,

for γ ∈ {0.8, 0.7, 0.6, 0.5} and k = 0.1. The starting value is x0 =
1

2
for Table 1 and x0 = 2 for Table 2.

Liviu-Ignat Socaciu (NUCBM) XGEN 2024 May 17, 2024 17 / 32



Numerical experiments

▶ For Table 1 and Table 2, let Tx =
1

x
, x ∈

[
1

2
, 2

]
. Then T is

3

2
-

enriched nonexpansive operator and F (T ) = {1}. According to
Remark 3, 5) any b-enriched nonexpansive mapping is a
(b, k)-enriched strictly pseudocontractive mapping for any k < 1.

▶ We choose in our examples, k =
1

10
. Hence, T is

(
3

2
,
1

10

)
- enriched

strictly pseudocontractive mapping.

▶ It is easily seen that the Krasnoselskij iteration converges to x∗ = 1,

for γ ∈ {0.8, 0.7, 0.6, 0.5} and k = 0.1. The starting value is x0 =
1

2
for Table 1 and x0 = 2 for Table 2.
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T. 1: Results for γ ∈ {0.8, 0.7, 0.6, 0.5}, k = 0.1, x0 = 0.5

γ 0.8 0.7 0.6 0.5

k 0.1 0.1 0.1 0.1
n

0 0.5 0.5 0.5 0.5
1 1.7000 1.5500 1.4000 1.2500
2 0.8106 0.9166 0.9886 1.0250
3 1.1491 1.0387 1.0024 1.0003
4 0.9260 0.9855 0.9995 1
5 1.0491 1.0059 1.0001 1
6 0.9724 0.9977 1 1
7 1.0172 1.0009 1 1
8 0.9899 0.9996 1 1
9 1.0061 1.0002 1 1
10 0.9963 0.9999 1 1
11 1.0022 1 1 1
12 0.9987 1 1 1

N 18 10 5 3
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T. 2: Results for γ ∈ {0.8, 0.7, 0.6, 0.5}, k = 0.1, x0 = 2

γ 0.8 0.7 0.6 0.5

k 0.1 0.1 0.1 0.1
n

0 2 2 2 2
1 0.8000 0.9500 1.1000 1.2500
2 1.1600 1.0218 0.9855 1.0250
3 0.9217 0.9916 1.0030 1.0003
4 1.0523 1.0034 0.9994 1
5 0.9707 0.9986 1.0001 1
6 1.0183 1.0005 1 1
7 0.9893 0.9998 1 1
8 1.0065 1.0001 1 1
9 0.9961 1 1 1
10 1.0023 1 1 1
11 0.9986 1 1 1
12 1.0008 1 1 1

N 17 8 5 3
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Numerical experiments

▶ For Table 3 and Table 4, let the same enriched nonexpansive operator

T , Tx =
1

x
, x ∈

[
1

2
, 2

]
, with b =

3

2
and F (T ) = {1}.

▶ In the next tables, the Krasnoselskij iteration converges to x∗ = 1, for

γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The starting value is x0 =
1

2
for Table 3

and x0 = 2 for Table 4.
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Table 3: Results for γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, x0 = 0.5

γ 0.1 0.2 0.3 0.4 0.5
n

0 0.5 0.5 0.5 0.5 0.5
1 0.6500 0.8000 0.9500 1.1000 1.2500
2 0.7388 0.8900 0.9808 1.0236 1.0250
3 0.8003 0.9367 0.9924 1.0049 1.0003
4 0.8452 0.9629 0.9970 1.0010 1
5 0.8790 0.9780 0.9988 1.0002 1
6 0.9049 0.9869 0.9995 1 1
7 0.9249 0.9922 0.9998 1 1
8 0.9405 0.9953 0.9999 1 1
9 0.9528 0.9972 1 1 1
10 0.9625 0.9983 1 1 1
11 0.9701 0.9990 1 1 1
12 0.9762 0.9994 1 1 1
13 0.9810 0.9996 1 1 1

N 39 16 8 5 3
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Table 4: Results for γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, x0 = 2

γ 0.1 0.2 0.3 0.4 0.5
n

0 2 2 2 2 2
1 1.8500 1.700 1.5500 1.4000 1.2500
2 1.7191 1.4776 1.2785 1.1257 1.0250
3 1.6053 1.3175 1.1296 1.0308 1.0003
4 1.5071 1.2058 1.0663 1.0065 1
5 1.4227 1.1305 1.0234 1.0013 1
6 1.3507 1.0813 1.0095 1.0003 1
7 1.2897 1.0500 1.0038 1.0001 1
8 1.2383 1.0305 1.0015 1 1
9 1.1952 1.0185 1.0006 1 1
10 1.1593 1.0111 1.0002 1 1
11 1.1297 1.0067 1.0001 1 1
12 1.1052 1.0040 1 1 1
13 1.0852 1.0024 1 1 1

N 46 20 11 7 3
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Numerical experiments

Remark 7

Let be the same enriched strictly pseudocontractive mapping with

b =
3

2
and k =

1

10
. For γ =

9

10
, the conditions of Theorem 2 are not

satisfied. The Krasnoselskij iteration reduces to

xn+1 =
1

10
xn +

9

10 · xn

and, for x0 = 2, we obtain

x1 = 0.6500

x2 = 1.4496

x3 = 0.7658

x4 = 1.2518
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Numerical experiments

...

x40 = 1.0001

x41 = 0.9999

x42 = 1

x43 = 1

x44 = 1

...

We see that {xn} converge to x∗ = 1. In this case, for k =
1

10
and

γ =
9

10
, the Krasnoseslkij iteration converges to 1 because the conditions

of Theorem 3 are satisfied and T is an enriched nonexpansive mapping.
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Conclusions

▶ In this paper, we studied the class of enriched strictly
pseudocontractive and enriched nonexpansive mappings in the setting
of a Hilbert space H. In order to approximate a fixed point of an
enriched strictly pseudocontractive and an enriched nonexpansive
mapping, we used the Krasnoselskij iteration. The focus of this paper
is centered on weak convergence results (Theorem 2 and Theorem 3)
and strong convergence results (Theorem 4 and Theorem 5).

▶ These results extend some convergence theorems in [14] from strictly
pseudocontractive mappings to enriched strictly pseudocontractive
mappings and from nonexpansive mappings to enriched nonexpansive
mappings.

▶ In the last part we presented some numerical experiments intended to
illustrate the effectiveness of the Krasnoselskij iteration in the class of
enriched strictly pseudocontractive mappings and enriched
nonexpansive mappings.
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