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Abstract

In this paper, we present some results about the apro-
ximation of fixed points of enriched strictly pseudocon-
tractive and enriched nonexpansive operators. There are
numerous works in this regard (for example [9], [10], [11]
[14], [16], [35] and references to them). Of course, the
bibliografical references are extensive and they are men-
tioned at the end of this paper. In order to approximate
the fixed points of enriched strictly pseudocontractive and
enriched nonexpansive mappings, we use the Krasnosels-
kii iterative algorithm for which we prove weak and strong
convergence theorems.
Also, in this paper, we make a comparative study about
some classical convergence theorems from the literature
in the class of enriched strictly pseudocontractive and en-
riched nonexpansive mappings.
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1. Introduction and Preliminaries

Definition 1.1. [9] Let K be a nonempty subset of a real normed linear space X. A mapping T : K →
K is called:

i) nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥ ∀x, y ∈ K. (1)

ii) pseudocontractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥x− y − (Tx− Ty)∥ ∀x, y ∈ K. (2)

iii) strictly pseudocontractive if there exist k < 1 such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥x− y − (Tx− Ty)∥ ∀x, y ∈ K. (3)

In this case, T is also called k-strictly pseudocontractive.
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Remark 1.2. It is easy to see that every nonexpansive mapping is strictly pseudocontractive and every
strictly pseudocontractive mapping is pseudocontractive, but the reverses are not more true. Moreover,
like in the case of nonexpansive mappings, any strictly pseudocontractive operator is Lipschitz continuous
([37]), i.e.

∥Tx− Ty∥ ≤ L∥x− y∥ ∀x, y ∈ K, (L > 0). (4)

An element x ∈ K is said to be a fixed point of T is Tx = x and the set of fixed points of T is
denoted by F (T ).

The notion of strictly pseudocontractive operator in Hilbert spaces has been introduced and studied
by Browder and Petryshyn [14], where the following result has been established.

Theorem 1.3. Let K be a bounded closed convex subset of a Hilbert space H and T : K → K be a
k-strictly pseudocontractive mapping. Then for any given x0 ∈ K and any fixed number γ such that
1− k < γ < 1, the sequence {xn}∞0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (5)

converges weakly to some fixed point of T . If, in addition, T is demicompact, then {xn}∞0 converges
strongly to some fixed point of T .

Remark 1.4. [38] We remember that a mapping T : K → H is called demicompact if it has the
property that whenever {un} is a bounded sequence in H and {Tun − un} is strongly convergent, then
there exists a subsequence {unk

} of {un} which is strongly convergent, where H is a Hilbert space and
K a subset of H.

Definition 1.5. [9] Let (X, ∥ · ∥) be a linear normed space. A mapping T : X → X is called:

i) enriched nonexpansive mapping if there exists b ∈ [0,∞) such that

∥b(x− y) + Tx− Ty∥ ≤ (b+ 1)∥x− y∥, ∀x, y ∈ X. (6)

To indicate the constant involved in (??) we shall also call T as a b-enriched nonexpansive mapping.
ii) enriched strictly pseudocontractive mapping if there exist b ∈ [0,∞) and k < 1 such that

∥b(x− y) + Tx− Ty∥2 ≤

≤ (b+ 1)2∥x− y∥2 + k∥x− y − (Tx− Ty)∥2 ∀x, y ∈ X (7)

We shall also call T as a (b, k)-enriched strictly pseudocontractive mapping.

Remark 1.6. 1) [9] It is easy to see that any nonexpansive mapping T is a 0-enriched mapping, i.e.,
it satisfies (??) with b = 0.

2) [9] We note that, according to Theorem 12.1 in [25], in a Hilbert space any enriched nonexpansive
mapping which is also firmly nonexpansive is nonexpansive. T is said to be firmly nonexpansive if

∥T (x)− T (y)∥2 + ∥(Id− T )(x)− (Id− T )(y)∥2 ≤ ∥x− y∥2

(x, y ∈ X).

3) [9] It is very important to note that, similar to the case of nonexpansive mappings, any enriched
nonexpansive mapping is continuous.

4) [11] Any strictly pseudocontractive mapping T is a (0, k)-enriched strictly pseudocontractive ma-
pping, i.e., it satisfies (??) with b = 0.

5) [11] Any b-enriched nonexpansive mapping is a (b, k)-enriched strictly pseudocontractive mapping
for any k < 1.
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Example 1.7. 1) T : [0, 4] → [0, 4], Tx = 4− x, for all x ∈ [0, 4] is nonexpansive and T has a unique
fixed point, F (T ) = {2}.

2) If T : [0, 10] → [0, 10], Tx = 2x− 10, then T is not nonexpansive, because, for x = 5 and y = 4, then
∥Tx− Ty∥ ≤ ∥x− y∥ ⇔ 2 ≤ 1, which is false.

3) [9] Let X =

[
1

2
, 2

]
be endowed with usual norm and T : X → X be defined by Tx =

1

x
, for all

x ∈
[
1

2
, 2

]
. Then T is a

3

2
- enriched nonexpansive mapping and F (T ) = {1}.

4) Let k =
1

10
be a fixed number. Then T :

[
1

2
, 2

]
→

[
1

2
, 2

]
be defined by Tx =

1

x
, for all x ∈

[
1

2
, 2

]
is a

(
3

2
,
1

10

)
- enriched strictly pseudocontractive mapping and F (T ) = {1}.

Definition 1.8. [14] Let H be a Hilbert space and K a closed convex subset of H. A mapping T :
K → K is called asymptotically regular (on K) if, for each x ∈ K,

∥Tn+1x− Tnx∥ → 0, as n → ∞.

Remark 1.9. Throughout this paper, we take H as a real Hilbert space with scalar product ⟨·, ·⟩ and
induced norm ∥ · ∥.

2. Weak convergence theorems for enriched strictly pseudocontractive mappings and en-
riched nonexpansive mappings by Krasnoselskij iteration

Theorem 2.1. [11] Let K be a bounded closed convex subset of a Hilbert space H and T : K → K be
a (b, k)-enriched strictly pseudocontractive mapping. Then Fix(T ) ̸= ∅ and, for any given x0 ∈ K and
any fixed number γ, such that 0 < γ < 1− k, the Krasnoselskij iteration {xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (8)

converges weakly to a fixed point of T .

Theorem 2.2. [9] Let K be a bounded closed convex subset of a Hilbert space H and T : K → K be an
enriched nonexpansive operator with Fix(T ) = {p}. Then, for any given x0 ∈ K and any fixed number
γ, 0 < γ < 1, the Krasnoselskij iteration {xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (9)

converges weakly to p.

3. Strong convergence theorems for enriched strictly pseudocontractive mappings and en-
riched nonexpansive mappings by Krasnoselskij iteration

Theorem 3.1. [11] Let K be a bounded closed convex subset of a Hilbert space H and T : K → K be
a (b, k)-enriched strictly pseudocontractive and demicompact mapping. Then Fix(T ) ̸= ∅ and, for any
given x0 ∈ K and any fixed number γ, such that 0 < γ < 1 − k, the Krasnoselskij iteration {xn}∞n=0

given by
xn+1 = (1− γ)xn + γTxn, n ≥ 0, (10)

converges strongly to a fixed point of T .

Remark 3.2. Any k-strictly pseudocontractive mapping is a (0, k)-enriched strictly pseudocontractive
mapping. Hence, the next corollary follows from Theorem ?? for b = 0 , that is, for γ = 1.
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Corollary 3.3. [11] Let K be a bounded closed convex subset of a Hilbert space H and T : K → K be
a k-strictly pseudocontractive and demicompact operator. Then Fix(T ) ̸= ∅ and, for any given x0 ∈ K
and any fixed number γ, such that 0 < γ < 1− k, the Krasnoselskij iteration {xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (11)

converges strongly to a fixed point of T .

Theorem 3.4. [9] Let K be a bounded closed convex subset of a Hilbert space H and T : K → K
be an enriched nonexpansive and demicompact mapping. Then the set Fix(T ) of fixed points of T is
a nonempty convex set and there exists γ ∈ (0, 1) such that, for any given x0 ∈ K, the Krasnoselskij
iteration {xn}∞n=0 given by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (12)

converges strongly to a fixed point of T .

Remark 3.5. Any nonexpansive mapping is a 0-enriched nonexpansive mapping. Hence, the next
corollary follows from Theorem ?? for b = 0, that is, γ = 1.

Corollary 3.6. [14] Let K be a bounded closed convex subset of a Hilbert space H and T : K → K be an
nonexpansive and demicompact operator. Then the set Fix(T ) of fixed points of T is a nonempty convex
set and there exists γ ∈ (0, 1) such that, for any given x0 ∈ K, the Krasnoselskij iteration {xn}∞n=0 given
by

xn+1 = (1− γ)xn + γTxn, n ≥ 0, (13)

converges strongly to a fixed point of T .

4. Numerical experiments

We present some numerical experiments intended to illustrate the effectiveness of the Krasnoselskii
iteration in the class of enriched strictly pseudocontractive mappings and enriched nonexpansive ma-
ppings.

For Table 1 and Table 2, let Tx =
1

x
, x ∈

[
1

2
, 2

]
. Then T is

3

2
- enriched nonexpansive operator

and F (T ) = {1}. According to Remark ??, 5) any b-enriched nonexpansive mapping is a (b, k)-enriched

strictly pseudocontractive mapping for any k < 1. We choose in our example, k =
1

10
. Hence, T is(

3

2
,
1

10

)
- enriched strictly pseudocontractive mapping.

It is easily seen that the Krasnoselskii iteration converges to x∗ = 1, for γ ∈ {0.8, 0.7, 0.6, 0.5} and

k = 0.1. The starting value is x0 =
1

2
for Table 1 and x0 = 2 for Table 2. The numerical experiments

illustrate the convergence of the Krasnoselskii iteration. N denotes the number of iterations needed to
reach the exact solution with four exact digits. Note also the fact that, for fixed k = 0.1 and for high
values of γ, the Krasnoselskii iteration converges slowly, while for small values of γ, it converges faster.

Table 1: Results of the numerical experiments for γ ∈ {0.8, 0.7, 0.6, 0.5}, k = 0.1 and x0 =
1

2
.

4



γ 0.8 0.7 0.6 0.5
k 0.1 0.1 0.1 0.1

n

0 0.5 0.5 0.5 0.5
1 1.7000 1.5500 1.4000 1.2500
2 0.8106 0.9166 0.9886 1.0250
3 1.1491 1.0387 1.0024 1.0003
4 0.9260 0.9855 0.9995 1
5 1.0491 1.0059 1.0001 1
6 0.9724 0.9977 1 1
7 1.0172 1.0009 1 1
8 0.9899 0.9996 1 1
9 1.0061 1.0002 1 1
10 0.9963 0.9999 1 1
11 1.0022 1 1 1
12 0.9987 1 1 1
N 18 10 5 3

Table 2: Results of the numerical experiments for γ ∈ {0.8, 0.7, 0.6, 0.5}, k = 0.1 and x0 = 2.

γ 0.8 0.7 0.6 0.5
k 0.1 0.1 0.1 0.1

n

0 2 2 2 2
1 0.8000 0.9500 1.1000 1.2500
2 1.1600 1.0218 0.9855 1.0250
3 0.9217 0.9916 1.0030 1.0003
4 1.0523 1.0034 0.9994 1
5 0.9707 0.9986 1.0001 1
6 1.0183 1.0005 1 1
7 0.9893 0.9998 1 1
8 1.0065 1.0001 1 1
9 0.9961 1 1 1
10 1.0023 1 1 1
11 0.9986 1 1 1
12 1.0008 1 1 1
N 17 8 5 3

For Table 3 and Table 4, let the same enriched nonexpansive operator T , Tx =
1

x
, x ∈

[
1

2
, 2

]
, with

b =
3

2
and F (T ) = {1}.

In the next table, the Krasnoselskii iteration converges to x∗ = 1, for γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The

starting value is x0 =
1

2
for Table 3 and x0 = 2 for Table 4. The numerical experiments illustrate

the convergence of the Krasnoselskii iteration. N denotes the number of iterations needed to reach the
exact solution with four exact digits. Note also the fact that, for small values of γ, the Krasnoselskii
iteration converges slowly, while for high values of γ, it converges faster.

Table 3: Results of the numerical experiments for γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and x0 =
1

2
.
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γ 0.1 0.2 0.3 0.4 0.5
n

0 0.5 0.5 0.5 0.5 0.5
1 0.6500 0.8000 0.9500 1.1000 1.2500
2 0.7388 0.8900 0.9808 1.0236 1.0250
3 0.8003 0.9367 0.9924 1.0049 1.0003
4 0.8452 0.9629 0.9970 1.0010 1
5 0.8790 0.9780 0.9988 1.0002 1
6 0.9049 0.9869 0.9995 1 1
7 0.9249 0.9922 0.9998 1 1
8 0.9405 0.9953 0.9999 1 1
9 0.9528 0.9972 1 1 1
10 0.9625 0.9983 1 1 1
11 0.9701 0.9990 1 1 1
12 0.9762 0.9994 1 1 1
13 0.9810 0.9996 1 1 1
N 39 16 8 5 3

Table 4: Results of the numerical experiments for γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and x0 = 2.

γ 0.1 0.2 0.3 0.4 0.5
n

0 2 2 2 2 2
1 1.8500 1.700 1.5500 1.4000 1.2500
2 1.7191 1.4776 1.2785 1.1257 1.0250
3 1.6053 1.3175 1.1296 1.0308 1.0003
4 1.5071 1.2058 1.0663 1.0065 1
5 1.4227 1.1305 1.0234 1.0013 1
6 1.3507 1.0813 1.0095 1.0003 1
7 1.2897 1.0500 1.0038 1.0001 1
8 1.2383 1.0305 1.0015 1 1
9 1.1952 1.0185 1.0006 1 1
10 1.1593 1.0111 1.0002 1 1
11 1.1297 1.0067 1.0001 1 1
12 1.1052 1.0040 1 1 1
13 1.0852 1.0024 1 1 1
N 46 20 11 7 3

Remark 4.1. Let be the same enriched strictly pseudocontractive mapping with b =
3

2
and k =

1

10
.

For γ =
9

10
, the conditions of Theorem ?? are not satisfied. The Krasnoselskii iteration reduces to

xn+1 =
1

10
xn +

9

10 · xn

and, for x0 = 2, we obtain
x1 = 0.6500

x2 = 1.4496

x3 = 0.7658
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x4 = 1.2518

...

x40 = 1.0001

x41 = 0.9999

x42 = 1

x43 = 1

x44 = 1

...

We see that {xn} converge to x∗ = 1. In this case, for k =
1

10
and γ =

9

10
, the Krasnoseslkii iteration

converges to 1 because the conditions of Theorem ?? are satisfied and T is an enriched nonexpansive
mapping.

5. Final remarks

In this paper, we studied the class of enriched strictly pseudocontractive and enriched nonex-
pansive mappings in the setting of a Hilbert space H. In order to approximate a fixed point of an
enriched strictly pseudocontractive and an enriched nonexpansive mapping, we used the Krasnoselskij
iteration. The focus of this paper is centered on weak convergence results (Theorem ?? and Theorem
??) and strong convergence results (Theorem ?? and Theorem ??).
These results extend some convergence theorems in [14] from strictly pseudocontractive mappings to en-
riched strictly pseudocontractive mappings and from nonexpansive mappings to enriched nonexpansive
mappings.
In the last part we presented some numerical experiments intended to illustrate the effectiveness of
the Krasnoselskii iteration in the class of enriched strictly pseudocontractive mappings and enriched
nonexpansive mappings.
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