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Among the asymptotic behaviors of discrete linear systems an
important role is played by the dichotomy property and the notion of
(uniform) exponential dichotomy is introduced by Perron for differential
equations and by Li for difference equations. In the theory of difference
equations, subjects with large applications, studied by Agarwal,
Daleckii and Krein, Elaydi and Massera in ([1] [12],[16],[20]) a discrete
variant of Perron’ s results was given by Ta Li in [19]. Several results
about exponential dichotomy were obtained by [10], [22], [18].
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One of the main reasons for weakening the assumption of uniform
exponential dichotomy is that from the point of view of ergodic theory
almost all variational equations in a finite-dimensional space admit a
nonuniform exponential dichotomy. On the other hand it is important to
treat the case of noninvertible systems because of their interest in
applications (e.g., random dynamical systems, generated by random
parabolic equations, are not invertible).
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Characterizations of the nonuniform exponential dichotomy for discrete
linear systems can be found in the works [5], [26], [29], [28] [21], [23]
and of uniform exponential dichotomy for discrete linear systems can
be found in the works [6], [27], [25], [24].
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The present paper treats two concepts of h-dichotomy in the
nonuniform case for discrete-time systems in Banach spaces, that is
h-dichotomy and weak h-dichotomy. These concepts use strongly
invariant types of h-dichotomy projections sequences. The main result
of the paper is characterizations of Datko-types for these concepts.
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
1.2.Nonuniform h-growth with strongly invariant sequence of projections

1. Preliminaries

Let X be a real or complex Banach space and B(X ) the Banach
algebra of all bounded operators from X into itself. The norms of both
these spaces will be denote by || · ||. Let N be the set of all positive
intergers and we deonte by ∆ and T the follwing sets
∆ = {(m,n) ∈ N2 : m ≥ n} T = {(m,n,p) ∈ N3 : m ≥ n ≥ p}.
In this paper we consider linear discrete-time systems of the form

(A) xn+1 = Anxn, n ∈ N

where (An) is a sequence in B(X ).
Then every solution x = (xn) of system (A) is given by

xm = An
mxn, for all (m,n) ∈ ∆,

where

An
m =

{
Am−1Am−2...An, m > n
I, m = n

and I is the identity operator on X.
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Remarca 1
We have the following properties:
(i) An

n+1 = An, for all n ∈ N
(ii) An

mAp
n = Ap

m, for all (m,n,p) ∈ T .
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Definiţia 2.1
A nondecreasing sequence (hn) on [1,∞) is called growth rate
sequence if lim

n→∞
hn = ∞.

Definiţia 2.2
A sequence (Pn) on B(X ) is called projections sequence on X if

P2
n = Pn, for all n ∈ N
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
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Remarca 2
If (Pn) is projections sequence on X, then the sequence Qn = I − Pn is
also a projections sequence on X, which is called the complementary
projections sequence of Pn with KerQm = RangePm and
RangeQm = KerPm and PmQm = QmPm = 0 for every m ∈ N.
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Definiţia 2.3
The sequence (Pn) is invariant for the linear system (A), if

AnPn = Pn+1An, for all n ∈ N

Remarca 3
If (Pn) is invariant for (A) then

An
mPn = PmAn

m An
mQn = QmAn

m,

for all (m,n) ∈ ∆.
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
1.2.Nonuniform h-growth with strongly invariant sequence of projections

Remarca 4
If the sequence of projections (Pn) is invariant for the linear system
(A), then we also have that the complementary sequence of
projections (Qn) is invariant for the linear system (A).

Popa Carmen-Florinela 11 / 34



Introduction
1.Preliminaries

2.The main results
Bibliography
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Definiţia 2.4
The sequence (Pn) is strongly invariant for the linear system (A) if it is
invariant for (A) and the restriction of An

m is an isomorphism from
Range Qn to Range Qm.

Remarca 5
If the sequence of projections (Pn) is a strongly invariant for the
system (A), then there exists B : ∆ → R with
B(n,m) = Bm

n : RangeQm → RangeQn isomorphism from Ker Pm to
Ker Pn with An

mBm
n Qm = Qm and Bm

n An
mQn = Qn for all (m,n) ∈ ∆.
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Remarca 6
If (Pn) is a strongly invariant projections sequence for (A) then there
exists (Bn), for all (m,n) ∈ ∆, is an isomorphism from Range Qm to
Range Qn with the following properties:
1. An

mBm
n Qm = Qm

2. Bm
n An

mQn = Qn
3. Bm

n Qm = QnBm
n Qm

4. Qm = Bm
mQm = QmBm

mQm
5. Bm

p Qm = Bn
pBm

n Qm
for all (m,n), (n,p) ∈ ∆.
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1.1.Nonuniform h-dichotomy with strongly invariant
sequence of projections

Definiţia 2.5
Let (Pn) be a strong invariant sequence projections for the linear
system (A). The pair (A,P) is nonuniformly h-dichotomic with respect
to the sequence projections P if and only if there are
N ≥ 1, ν > 0, ϵ ≥ 0 such that the following conditions hold:
(nhds

1 ) hν
m||An

mPnx || ≤ Nhν
nhϵ

n||Pnx ||
(nhds

2 ) hν
m||Bm

n Qmx || ≤ Nhν
nhϵ

m||Qmx ||
for all (m,n, x) ∈ ∆× X .
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Remarca 7
Let (Pn) be a strong invariant sequence projections for the linear
system (A). The pair (A,P) is nonuniformly h- dichotomic with respect
to the sequence projections P if and only if there are
N ≥ 1, ν > 0, ϵ ≥ 0 such that the following conditions hold:
(nhds′

1 ) hν
m||A

p
mPpx || ≤ Nhν

nhϵ
n||A

p
nPpx ||

(nhds′
2 ) hν

n ||Bm
p Qmx || ≤ Nhν

phϵ
m||Bm

n Qmx ||
for all (m,n,p, x) ∈ T × X .
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Remarca 8
1. Talking ϵ = 0, in Definition 2.1, it results the uniform h- dichotomy
property, denote by (u.h.d .).
2. Talking hm = em, for all m ∈ N in Definition 2.1, it results the
nonuniform exponential dichotomy property, denote by (n.e.d .)s.
3. Talking hm = m + 1, for all m ∈ N in Definition 2.1, it results the
nonuniform polynomial dichotomy property, denote by (n.p.d .)s.
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Definiţia 2.6
Let (Pn) be a sequence of projections wich is strongly invariant for the
(A). If the pair (A,P) is weakly nonuniformly h-dichotomic, then there
are N ≥ 1, ν > 0, ϵ ≥ 0 such that:
(wnhds

1 ) hν
m||An

mPn|| ≤ Nhν
nhϵ

n||Pn||
(wnhds

2 ) hν
m||Bm

n Qm|| ≤ Nhν
nhϵ

m||Qm||
for all (m,n) ∈ ∆.
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
1.2.Nonuniform h-growth with strongly invariant sequence of projections

Remarca 9
Let (Pn) be a sequence of projections wich is strongly invariant for the
(A). The pair (A,P) is weakly nonuniformly h-dichotomic if and only if
there are N ≥ 1, ν > 0, ϵ ≥ 0 such that:
(wnhds′

1 ) hν
m||A

p
mPp|| ≤ Nhν

nhϵ
n||A

p
nPp||

(wnhds′
2 ) hν

n ||Bm
p Qm|| ≤ Nhν

phϵ
m||Bm

n Qm||
for all (m,n,p) ∈ T .
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
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Remarca 10
If the pair (A) is n.h.d . then it is also w .n.h.d . Indeed, it is sufficient to
observe that from supremum for ||x || ≤ 1 in (nhd1), respectively in
(nhd2), one obtains (wnhd1) and (wnhd2).
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
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Remarca 11
1. Talking ϵ = 0, in Definition 2.2, it results the weak uniform h-
dichotomy property, denote by (w .u.h.d .).
2. Talking hm = em, for all m ∈ N in Definition 2.2, it results the weak
nonuniform exponential dichotomy property, denote by (w .n.e.d .)s.
3. Talking hm = m+ 1, for all m ∈ N in Definition 2.2, it results the weak
nonuniform polynomial dichotomy property, denote by (w .n.p.d .)s.
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1.2.Nonuniform h-growth with strongly invariant
sequence of projections

Definiţia 2.7
If the pair (A,P) has nonuniform h-growth (n.h.g), then there are
M ≥ 1, ω > 0 and δ ≥ 0 such that:
(nhg1) hω

n ||A
p
mPpx || ≤ Mhω

mhδ
n||A

p
nPpx ||

(nhg2) hω
p ||Bm

p Qmx || ≤ Mhω
mhδ

m||Bm
n Qmx ||

for all (m,n,p, x) ∈ T × X .
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
1.2.Nonuniform h-growth with strongly invariant sequence of projections

Remarca 12
The pair (A,P) has nonuniform h-growth if and only if there are
M ≥ 1, ω > 0 and δ ≥ 0 such that:
(nhg

′
1) hω

n ||An
mPnx || ≤ Mhω

mhδ
n||Pnx ||

(nhg
′
2) hω

n ||Bm
n Qmx || ≤ Mhω

mhδ
m||Qmx ||

for all (m,n, x) ∈ ∆× X .
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
1.2.Nonuniform h-growth with strongly invariant sequence of projections

Remarca 13
The particular cases for the concept of nonuniform h-growth are:
1. If δ = 0, we have uniform h-growth.
2. If hm = em, we have nonuniform exponential growth.
3. If hm = m + 1, we have nonuniform polynomial growth.

Popa Carmen-Florinela 23 / 34



Introduction
1.Preliminaries

2.The main results
Bibliography

1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
1.2.Nonuniform h-growth with strongly invariant sequence of projections

Definiţia 2.8
If the pair (A,P) has weak nonuniform h-growth (w.n.h.g), then there
are M ≥ 1, ω > 0 and δ ≥ 0 such that:
(wnhg1) hω

n ||A
p
mPp|| ≤ Mhω

mhδ
n||A

p
nPpx ||

(wnhg2) hω
p ||Bm

p Qm|| ≤ Mhω
mhδ

m||Bm
n Qm||

for all (m,n,p) ∈ T .
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
1.2.Nonuniform h-growth with strongly invariant sequence of projections

Remarca 14
The pair (A,P) has weak nonuniform h-growth if and only if there are
M ≥ 1, ω > 0 and δ ≥ 0 such that:
(wnhg

′
1) hω

n ||An
mPn|| ≤ Mhω

mhδ
n||Pn||

(wnhg
′
2) hω

n ||Bm
n Qm|| ≤ Mhω

mhδ
m||Qm||

for all (m,n) ∈ ∆.
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1.1.Nonuniform h-dichotomy with strongly invariant sequence of projections
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Remarca 15
The particular cases for the concept of weak nonuniform h-growth are:
1. If δ = 0, we have weak uniform h-growth.
2. If hm = em, we have weak nonuniform exponential growth.
3. If hm = m + 1, we have weak nonuniform polynomial growth.
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2. The main results

In this paper, we will consider H the set of growth rates (hn) that satisfy
the following properties:
(1) ∃ H > 1 : hn+1 ≤ Hhn,∀n ∈ N

(2) ∀α ∈ (−1,0), ∃ H1 > 1 :
∞∑

k=m

hα
k ≤ H1hα

m, ∀m ∈ N

(3) ∀α ∈ (0,1), ∃ H2 > 1 :
m∑

j=0

hα
j ≤ H2hα

m, ∀m ∈ N.
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We consider (Pn) a sequence of projections strongly invariant for (A)
and (Qn) the complementary projections sequence of (Pn).

Teorema 3.1
If (A,P) has nonuniform h-growth and h ∈ H, the pair (A,P) is
nonuniformly h-dichotomic if and only if exists D > 1, d > 0 with

(nhDs
1)

∞∑
k=n

hd
k ||A

p
kPpx || ≤ Dhd+ϵ

n ||Ap
nPpx ||

for all (m,n,p, x) ∈ T × X .

(nhDs
2)

∞∑
k=p

hd
k

||Bm
k Qmx ||

≤
Dhd

p hϵ
m

||Bm
p Qmx ||

,

for all Bm
p Qmx ̸= 0 and (m,n,p, x) ∈ T × X .
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Teorema 3.2
If (A,P) has nonuniform h-growth, h ∈ H, then the pair (A,P) is
nonuniformly h-dichotomic if and only if exists D > 1, d > 0 with:

(nhDs1
2 )

m∑
j=n

h−d
j

||An
j Pnx ||

≤ Dh−d+ϵ
n

||An
mPnx ||

,

for all (m,n, x) ∈ ∆× X and An
mPnx ̸= 0.

(nhDs2
2 )

m∑
j=n

||Bm
j Qmx ||
hd

j
≤ D||Qmx ||

hd+ϵ
m

,

for all (m,n,p, x) ∈ T × X .
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Teorema 3.3
If (A,P) has h ∈ H, the pair (A,P) is weakly nonuniformly
h-dichotomic if and only if exists D > 1, d > 0 with

(wnhDs
1)

∞∑
k=n

hd
k ||A

p
kPp|| ≤ Dhd+ϵ

n ||Ap
nPp||

for all (m,n,p) ∈ T .

(wnhDs
2)

∞∑
k=p

hd
k

||Bm
k Qm||

≤
Dhd

p hϵ
m

||Bm
p Qm||

,

for all Bm
p Qmx ̸= 0 and (m,n,p) ∈ T .
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Teorema 3.4
If (A,P) has h ∈ H, then the pair (A,P) is weakly nonuniformly
h-dichotomic if and only if exists D > 1, d > 0 with:

(wnhDs1
2 )

m∑
j=n

h−d
j

||An
j Pn||

≤ Dh−d+ϵ
n

||An
mPn||

,

for all (m,n) ∈ ∆ and An
mPn ̸= 0.

(wnhDs2
2 )

m∑
j=n

||Bm
j Qm||
hd

j
≤ D||Qm||

hd+ϵ
m

,

for all (m,n,p) ∈ T .

Popa Carmen-Florinela 31 / 34



Introduction
1.Preliminaries

2.The main results
Bibliography

Open problems: The theorems of Barbashin type for uniform and
nonuniform cases with growth rates for discrete time systems in
Banach spaces.
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A. L. Sasu, M-G. Babuţia, B. Sasu, Admissibility and
nonuniform exponential dichotomy on the half-line, Bulletin
des Sciences Mathematiques, f2013, 137.4: 466-484.

A. L. Sasu, B. Sasu, Exponential dichotomy on the real line
and admissibility of function spaces, Integral Equations and
Operator Theory, 2006, 54(1), 113-130.

A.L. Sasu, B. Sasu, Admissibility criteria for nonuniform
dichotomic behavior of nonautonomous systems on the

Popa Carmen-Florinela 33 / 34



Introduction
1.Preliminaries

2.The main results
Bibliography

whole line, Applied Mathematics and Computation, 2020, 378:
125-167.

B. Sasu, A.L. Sasu, On the dichotomic behavior of discrete
dynamical systems on the half-line, Discrete Contin. Dyn.
Syst., 2013, 33, 3057-3084.

B. Sasu, A. L. Sasu, Sisteme dinamice discrete, Editura
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