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Introduction




Introduction

In recent decades within mathematical literature, one of the most
important topics discussed in the field of dynamical systems is the uniform
exponential behaviour. This concept was introduced by O. Perron in (see
[19]), while studying the connection between the conditional stability of an
equation x(z) = A(#)x and the existence of bounded solutions of the equation
x(r) = A(t)x + f (1, x).

The property of exponential dichotomy for linear differential equations
has gained importance since the appearance of two fundamental monographs
due to J. L. Massera & J. J. Schéffer in 1966 [12] and J. L. Daleckii & M.G.
Krein in 1974 [7]. Since then, there have been a number of works devoted to
this problem, such as [5], [8], and [11].
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Introduction

The asymptotic behaviour of stochastic evolution equations in infinite
dimensional spaces has proved to be a research area of large intensity. Based
on the stochastic equations studied in monographs by L. Arnold [1] and D.
Prato and J. Zabczyk [20] were born important examples of stochastic
evolution semiflows.

The exponential dichotomy in a stochastic setting was discused by
many authors, such as A. M. Ateiwi in [2] or T. Caraballo et al. in [6].
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Introduction

The notion of skew-evolution semiflow became a front-line topic in the
modern theory of dynamical system and differential equations. In the
deterministic setting it can be traced back to the works of M. Megan and C.
Stoica in [14] and generalizes the notion of: evolution operators, semigroups
of operators and skew-product semiflows (see [1, 8, 15, 13, 17, 16, 20]). The
property of dichotomy for stochastic skew-evolution semiflows in Banach
spaces is treated in [10], [22, 23, 24, 25].

Throughout the years an important extension of exponential dichotomy
and polynomial dichotomy is introduced by Pinto in his work in 1984 [18]
with the intention of obtaining results about stability for a weakly stable
system under some perturbations. This concept is called dichotomy with
growth rates or h-dichotomy, where by the growth rate, we understand a
bijective and nondecreasing application & : R — [1, 00) with [1_1>r£10 h(t) = oo.
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Introduction

Datko’s theorem was the starting point for important studies concerning
the uniform exponential stability of evolution equations. After the seminal
research of Datko [9], there has been a large number of papers devoted to this
subject. Generalizations of Datko’s results for the case of the polynomial
behaviors are given in [3, 4].

In the present paper, we approach the concept of uniform dichotomy in
mean with growth rates and the major result is the characterization of Datko
type for the uniform A-dichotomy in mean regarding invariant projections
families to the reversible stochastic skew-evolution semiflows. As particular
cases of the notion studied in our paper, we obtain the concept of uniform
exponential dichotomy in mean and uniform polynomial dichotomy in mean
respectively.

At the West University of Timisoara there is a Seminar of Scientific
Research initiated by Prof. Mircea Reghis and continued by Prof. Univ.
Emerit Mihail Megan, in which this issue is studied including in terms of
applications in theory control.
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Definitions and notations

We consider

(Q, B, u) a probability space

X a complex or real Banach spaces

B(X) the Banach algebra of all bounded linear operators acting on X
|| - || the norms on X and B(X) respectively

I the identity operator on X

A={(ts)eR::t>s}

T={(t,s,t0) ERY :1>s5>10}

L(Q, X, 1) the Banach space of all Bochner measurable functions

Fr0-xen [ f(w)ldn(e) < o
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Definitions and notations

Definition 2.1

A measurable random field ¢ : A x  — 2 is said to be a stochastic evolution
semiflow on ) if the following properties hold:

@ (es)) (t,t,w) =w,forall (t,w) € Ry x Q,

@ (es2) (t,s,p(s, to,w)) = @(t, ty,w), forallt > s>ty > 0and allw € Q.

Definition 2.2

Let ® : A x  — B(X) be a measurable map. We say that ® is a stochastic evolution
cocycle associated to the stochastic evolution semiflow ¢ : A x Q — Q if the
following conditions hold:

® (ec;) ®(t,1,w) = I (the identity operator on X), for all (z,w) € Ry x Q,

@ (ecy) D(1,s,p(s, to,w))P(s, to,w) = D(¢,1p,w), forall > s > £y > 0 and all
we .

If ® represents a stochastic evolution cocycle over a stochastic evolution semiflow ¢,
then the pair C = (®, ¢) is referred to as a stochastic skew-evolution semiflow.
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Definitions and notations

Definition 2.3

The stochastic evolution cocycle @ : A x Q — B(X) is said to be reversible if
for all (¢, s,w) € A x , the map ®(z, s, w) is bijective.

We denote by ®(t,5,w) = @~ 1(s,¢,w).
Definition 2.4

A mapping P : R, x Q — B(X) with the property P>(s,w) = P(s,w) for all
(s,w) € Ry x Qis called projections family on X.

IfP: Ry x Q — B(X) is a projections family, then the mapping
0 : Ry x Q — B(X) define as Q(s,w) = I — P(s,w) also forms a projections
family. This is referred to as the complementary projections family of P.
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Definitions and notations

Definition 2.5

A projections family P : R x Q — B(X) is said to be invariant to C = (®, ) if
(b(t7 s7 w)P(s7 w) = P(t7 gp(t7 ‘Y7 w))é(t7 ‘5‘7 w)’

for all (z,5,w) € A x Q.

If P remains invariant for C = (®, ), we denote by
Dp(t,5,w) : A X Q — B(X)

D(t,s,w)P(s,w); t >
the mapping defined by ®p(t,s,w) = ,
O (s, t,w)P(t, 0(t,5,w)); t < s.
Sforall (t,5,w) € A x Q.
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Definitions and notations

Proposition 2.1

If the stochastic evolution cocycle ® : A x Q — B(X) is reversible and the projection
family P is invariant for the stochastic skew-evolution semiflow C = (®, ) then
P(s,w)®~1(t,5,w) = @7 (t,5,w)P(t, (t, 5, w)), for all (t,s,w) € A x Q.

Proposition 2.2
IF®p(t,s,w) : A x Q — B(X) and ;' (1, 5,w) is its inverse, then:

(i) (t,5,w)2~ (1,5, w)P(t,(t, 5,w)) = P(t, p(t,5,w)), forall
(t,5,w) € A x €

(ii) ®7(t,5,w)P(t,s,w)P(s,w) = P(s,w), forall (t,s,w) € A x Q;

(iii) ®71(1,5,w)P(1, (1, 5,w)) = P(s,w) P~ (t,5,w)P(t, o(1,5,w)), for
all (¢, s,w) € A x §;
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Uniform h-dichotomy in mean

Definition 3.1

A nondecreasing map A : Ry — [1, 00) with lim A(z) = oo is called a growth rate.
—o0

Definition 3.2

[25] The pair (C, P) is said to be uniformly h-dichotomic in mean (u.h.d.m.) if there
are some constants N > 1 and v > 0 such that

(uhdym) h(1)" /{ 12, t0, )P {10, o (@)l dp(w) <

Nh(s)" / (s, t0,) Plt0, w)xo(w) | dpe(w):

(uhdym) h(t)”/Q 12(s, 70, w)) Q(t0, w)xo (w) [[dp(w) <

Nh(s)” / 192, 10, )) Pt )0 (@) [ ds(c0).
Q
for all (z,s,tp,w) € T x Q and xy € L(Q, X, p);

If h(t) = €' and h(t) = t + 1, we infer the concepts of u.e.d.m. and u.p.d.m.
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Uniform h-dichotomy in mean

The pair (C, P) is uniformly h-dichotomic in mean if and only if there exist
N > 1 and v > 0 with

(uhd’lm) h(t)”/QH<I>(t,s,w)P(s,w)x(w)Hdu(w) <
melﬂmxmwmmmwx
(uhdiym) ()" /Q 1065, 0)x(w) | dpw) <

Ni(s)" /Q 122, 5, 0)Q(s, w)x(w) [dia(w),
forall (t,s,w) € A x Qandx € L(Q, X, p).
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Uniform h-dichotomy in mean

The pair (C, P) is uniformly h-dichotomic in mean with ® reversible
stochastic evolution cocycle (i.e. ¥(t,s,w) = ®~(t,5,w)) if and only if there
are N > 1 and v > 0 with:

mM%HzL/M (5, 10, @) P(5, (5, 0, )0 (@) |dpa(w) <
le/m (1,10, 0)P(t, 01, 10,0)) 50 () [ da(w):
mMmHlL/W (1, 10,0)0(t, (2, t0, )0 (w) [dpa(w) <

Mwléw O G R g
forall (t,s,ty,w) € T x Qand xy € L(Q, X, ),
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Uniform h-growth in mean

Definition 4.1

[25] The pair (C, P) is said to be with uniform h-growth in mean (u.h.g.m.) if there
exist constants M > 1 and «« > 0 such that:

(uhgim) h(s)® / 192, 10, w)P(t0, w)x0(w) | dpu(w) <

Mh(t)o‘/ﬂ||<I>(s,to,w)P(tU,w)xo(w)Hd,u(w);

(uhgam) h(s)® / 12(s, 10,)) Qto, w0 () |dp(w) <
Mh(r)® / 1207, f0, ) )P0, )0 w) [ dja(w),
for all (¢,s,t0,w) € T x Q and xo € L(Q, X, p);

As specific cases we note that when the growth rate is ¢, this establishes the concept
of uniform exponential growth in mean and if the growth rate is 7 + 1, then we arrive
at the concept of uniform polynomial growth in mean respectively.
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Uniform h-growth in mean

Remark 4.1

The pair (C, P) has uniform h-growth in mean if and only if there exist M > 1
and o > 0 with

(uhgym) h(S)o‘/Q 1 (2, 5,w)P(s, w)x(w) [[dp(w) <

Mi(1)® /Q (s, w)x(e)ldp(w):

(uhglym) h(s)® /Q 10Gs, (@) |dp(w) <

Mh(t)" /Q 122, 5, 0)Q(s, w)x(w) [da(w),
forall (t,s,w) € A x Qandx € L(Q, X, p).
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Uniform h-growth in mean

Theorem 4.1

The pair (C, P) is uniformly h-dichotomic in mean with ® reversible
stochastic evolution cocycle (i.e. ¥(t,s,w) = ®~(t,5,w)) if and only if there
exist M > 1 and oo > 0 with:

(uhg'm) h(s)° /Q 125, 0, w)P(s, (5, t0, ) 0 ) (o) <
Mi(r)® / 127, 10, )P, 0, f0, ) o () | dps(w);
(uhgym) h(s / 1272, t0, w) O, 0l 10, 0) ) x0(w) () <

Mi( /Q 1271 (5, o, ) Q(s, (s, f0,0)) o () | dps (),
forall (t,s,ty,w) € T x Qand xy € L(Q, X, ),
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Integral characterizations for uniform h-dichotomy in mean

Definition 5.1

Let C = (@, ¢) be a stochastic skew-evolution semiflow. We say that C is strongly measurable
if, for all (19, x) € Ry x L(£, X, p), the mapping

- / (150 ezl e A st i [ 6
Q

We denote by K the set of all functions i : Ry — [1, co) with the following properties:
@ there exists H > 1 satisfying h(t + 1) < Hh(t),Vt > 0.

0forallﬁ<0thereexistsH1>1with/h()’8dt<H1 h(s)?, ¥ s > 0.

s

t

@ forall 8 > 0 there exists alpha > 1 with / h(s)?ds < alpha h(t)®,¥ t > 0.

0

Ifh(t) = €', then h € H.
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Integral characterizations for uniform h-dichotomy in mean

We assume that C = (@, ) is a strongly measurable stochastic skew-evolution semiflow,
(C, P) with uniform h-growth in mean and h € H. The pair (C, P) is uniformly h-dichotomic
in mean if and only if there exist constants D > 1 and d € (0, 1) such that

| h(1)*
o / Jo 12712, 20, w)P(2, (1, f07w))x0(w)||du(w)d[ =
D h(s)*
Jo 1271 (s, 0, w)P(t, (s, 0, w) )x0(w) || d ()’
Sorall (t,s,t0,w) € T x Qand xo € L(Q, X, p),
with [o, ||®~" (s, 10, w)P(s, @ (s, to, w))xo(w) ||dpu(w) # O;

@hDim) [ h(ey* ([ 197" (1, 10,0)Q(t, (1, 10, w))o(w) [dpa(w) ) dt <
Q

D h(s)" / 1971 (5,t0, ) 05, (s, f0, )30 () | dpew),
Q
forall (t,s,t0,w) € T x Qand xo € L(Q, X, ).
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Integral characterizations for uniform h-dichotomy in mean

Corollary 5.2
We suppose that C =

(@, ) is a strongly measurable stochastic skew-evolution semiflow,
(C, P) with uniform exponential growth in mean. The pair (C, P) is uniformly exponentially
dichotomic in mean if and only if there exist constants D > 1 and d € [0, 1) with

et]r

o / o T8 10,00 0 o)) ) =
D e®

fg H(Dil (S, fo, W)P(s7 SD(S’ fo, w))xo(w)”dﬂ(w) ;

Sorall (t,s,f0,w) € T x Qand xo € L(Q, X, p),
with [ 81 (s, 10, )05, 9(s, 0,0))30(e) () # 0;

(ueDim) / (/ 1" (1, 10,0 <w(am,w»xo(w)ndu(w))drg

D / 187 (5, f0, ) @5, (s, t0, ) 10(w) | (),

Sorall (t,s,t0,w) € T x Qand xg € L(Q, X, ).
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Integral characterizations for uniform h-dichotomy in mean

Consider C = (®, ) as a strongly measurable stochastic skew-evolution semiflow., (C, P) has
uniform h-growth in mean and h € H. The pair (C, P) is uniformly h-dichotomic in mean if
and only if there exist constants D > 1 and d € [0, 1) such that

uhD m) /fQ ||¢: (s, 10, w)P(s, ¢ (s, to, ))x()(w)Hd:u(w)dsS

h(s)4
D Jo 1271 (1, 10, w) P(t, 0 (1, 10, ) )x0 (w) | dps(w)
h(t)4 ’
Sorall (t,s,t0,w) € T X Qand xo € L(Q, X, p);
uhD3m h(s) 5
( th ) fo/fﬂ ||<I>*1(s,to,w)Q(s,@(s,to,w))xo(w)ﬂdu(w)d =
D h(t)™*

fQ ‘|(I)71(t7 t07w)Q(t7¢(l7 to,w))xo(w)Hd,u(w)’
forall (t,s,t0,w) € T x Qand xg € L(Q, X, p)

with / 12711, 10, ) Q(t, (1, 10, )0 (@) [dpa(e) # O
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Integral characterizations for uniform h-dichotomy in mean

Corollary 5.4

Let C = (®, ) be a strongly measurable stochastic skew-evolution semiflow., (C, P) has
uniform exponential growth in mean. The pair (C, P) is uniformly exponentially dichotomic in
mean if and only if there exist some constants D > 1 and d € |0, 1) such that

t
=1
) [ 17 Pt D ,
e A)
fo
D [ 127" (1, 10, w)P(t, (1, 10, ) )30 (w) |dps(w)
edt d
Jorall (t,s,f0,w) € T x Qand xo € L(Q, X, p);
o —d
e A
(ueD3m) / ds <
’ , Jo 127" (s, 0, 0) (s, (s, 10, ) )x0(w) || dpa(w)
’ D e—dz

Jo 1271 (1, 10,w) (8, (2, 10, w))xo (w) || dps(w) |
Sorall (t,s,f0,w) € T x Qand xo € L(Q, X, )

With/Q 17" (¢, t0, w)O(t, ©(t, to, w))x0(w)]||dp(w) # 0.
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Open problems

e The generalization of these results for the nonuniform case.
e The generalization of these results for trichotomy.
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Thank you for your attention!
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