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Formulas for derivatives of multiple order of 
rational functions, with/without determinants of 

coefficients- Proofs of theorems 
Laurian Colcer 

 

The first two derivatives of rational functions 
 

Proof of Theorem 1. 
 

a) To prove (3) we present the calculation in detail: 

𝑓𝑛
[1]

(x) = f΄(x)g(x) - f(x)g΄(x) = (∑ 𝑗𝑎𝑗𝑥𝑗−1𝑛
𝑗=1 )(∑ 𝑏𝑖𝑥𝑖𝑛

𝑖=0 ) - (∑ 𝑎𝑖𝑥𝑖𝑛
𝑖=0 )(∑ 𝑗𝑏𝑗𝑥𝑗−1𝑛

𝑖=1 ) = 

∑ 𝑥𝑚 ∑ 𝑗𝑎𝑗𝑏𝑖𝑖+𝑗=𝑚+1
2𝑛−1
𝑚=0  – ∑ 𝑥𝑚 ∑ 𝑗𝑎𝑖𝑏𝑗𝑖+𝑗=𝑚+1

2𝑛−1
𝑚=0  = ∑ 𝑥𝑚 ∑ 𝑗(𝑎𝑗𝑏𝑖  −  𝑎𝑖𝑏𝑗)𝑖+𝑗=𝑚+1

2𝑛−1
𝑚=0  = 

∑ 𝑥𝑚 ∑ (𝑖𝑎𝑖𝑏𝑗 − 𝑗𝑎𝑖𝑏𝑗 )𝑖+𝑗=𝑚+1
2𝑛−1
𝑚=0 (8) 

We will reduce like terms that appear in each cm, highlighting the |ji| minors of the matrix 
A1: 

cm = ∑ 𝑗|𝑗𝑖|
𝑗>𝑖
𝑖+𝑗=𝑚+1  + ∑ 𝑗|𝑗𝑖|

𝑗<𝑖
𝑖+𝑗=𝑚+1  = ∑ 𝑗|𝑗𝑖|

𝑗>𝑖
𝑖+𝑗=𝑚+1  - ∑ 𝑗|𝑖𝑗|

𝑗<𝑖
𝑖+𝑗=𝑚+1  = (swapping notations 

for i and j)  = ∑ 𝑗|𝑗𝑖|
𝑗>𝑖
𝑖+𝑗=𝑚+1  - ∑ 𝑖|𝑗𝑖|

𝑗>𝑖
𝑖+𝑗=𝑚+1 , so cm = 



+=+

−
ij

mji

jiij
1

)( , Q.E.D. 

b) In order to find the form of the numerator 𝑓𝑛
[2]

(x) of the second derivative of the rational 

function, r΄΄(x)=
𝑓𝑛

[2]
(𝑥)

𝑔𝑡+1(𝑥)
, we are using the formula 𝑓𝑛

[2]
 = 

|

𝑔 0 𝑓

𝑔′ 𝑔 𝑓′

𝑔″ 2𝑔′ 𝑓″
|     (9) 

which can be proved either independently by derivation twice or as a special case for t = 2 of 

Lemma 1. All terms below ai , bj and bk with indexes i, j respectively k which are negative or greater 
than n are zero and the terms with those coefficients are considered zero (regardless of the power 

to which the indeterminate is raised x). 

We notice that from (9)  the degree of the polynomial 𝑓𝑛
[2]

 is no greater than 3n-2. We 

have: 

f΄΄(x)=∑ 𝑖(𝑖 − 1)𝑎𝑖𝑥𝑖−2𝑛
𝑖=0 , g΄(x)=∑ 𝑗𝑏𝑗𝑥𝑗−1𝑛

𝑗=0 , g΄΄(x)=∑ 𝑗(𝑗 − 1)𝑏𝑗𝑥𝑗−2𝑛
𝑗=0 . 

Using the linearity of the determinant in (9) as a function of columns, we develop it as a 
sum: 

𝑓𝑛
[2]

(x) = 

 −−−

−−

−−
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= 

(giving a common factor across each of the columns, then factoring the powers of x over the 

lines) 



2 

= ∑ 𝑎𝑖𝑏𝑗𝑏𝑘𝑥𝑖+𝑗+𝑘−2 |

1 0 1
𝑗 1 𝑖

𝑗(𝑗 − 1) 2𝑘 𝑖(𝑖 − 1)
|𝑖,𝑗,𝑘∈𝑀  = 

= ∑ 𝑎𝑖𝑏𝑗𝑏𝑘𝑥𝑖+𝑗+𝑘−2
𝑖,𝑗,𝑘∈𝑀 (𝑖 − 𝑗)(𝑖 + 𝑗 − 2𝑘 − 1). 

But since the terms for which i = j are zero, we have in the sum i ǂ j, so max(i+j+k-2) = (n-

1)+n+n-2 =3n-3, thus 
making the notation i+j+k-2= m, we have 

𝑓𝑛
[2]

(x) = ∑ 𝑑𝑚𝑥𝑚3𝑛−3
𝑚=0  where dm = 

= ∑ 𝑎𝑖𝑏𝑗𝑏𝑘

𝑖+𝑗+𝑘=𝑚+2

(i-j)(𝑖 + j-2k-1)  

which proves the formula (4). 

 We note that in the last sum we can interchange bj with bk, so this sum is 
symmetrical in j and k, so we can write 

2dm =∑ 𝑎𝑖𝑏𝑗𝑏𝑘𝑖+𝑗+𝑘=𝑚+2 [(i-j)(𝑖 + j-2k-1) +  (i-k)(𝑖 + k-2j-1)] = 

∑ 𝑎𝑖𝑏𝑗𝑏𝑘𝑖+𝑗+𝑘=𝑚+2 [2𝑖2 − 2𝑖 − 2𝑖(𝑗 + 𝑘) + 4𝑗𝑘 + (𝑗 + 𝑘) − 𝑗2 − 𝑘2] = 

∑ 𝑎𝑖𝑏𝑗𝑏𝑘𝑖+𝑗+𝑘=𝑚+2 {2𝑖(𝑖 − 1) + 6𝑗𝑘 − (𝑗 + 𝑘)[2𝑖 + (𝑗 + 𝑘) − 1)]}  

 

dm = ∑
𝑎𝑖𝑏𝑗𝑏𝑘

2
{2𝑖(𝑖 − 1) + 6𝑗𝑘 − (𝑗 + 𝑘)[2𝑖 + (𝑗 + 𝑘) − 1)]}𝑖+𝑗+𝑘=𝑚+2   (5) holds. 

To demonstrate (6), we write that (5)  2dm = ∑ 𝑎𝑖
𝑛
𝑖=0 ∑ 𝐵𝑖𝑗𝑘𝑗+𝑘=𝑚+2−𝑖 , 

where we note Bijk  ≝ {2𝑖(𝑖 − 1) + 6𝑗𝑘 − (𝑗 + 𝑘)[2𝑖 + (𝑗 + 𝑘) − 1)]}bjbk. 

Now since the Bijk terms are obviously symmetric in j and k, we deduce that 

∑ 𝐵𝑖𝑗𝑘𝑗+𝑘=𝑚+2−𝑖  =  ∑ 𝐵𝑖𝑗𝑘
𝑗<𝑘
𝑗+𝑘=𝑚+2−𝑖 + ∑ 𝐵𝑖𝑗𝑘

𝑗=𝑘
𝑗+𝑘=𝑚+2−𝑖  +

  

∑ 𝐵𝑖𝑗𝑘
𝑗>𝑘
𝑗+𝑘=𝑚+2−𝑖  = 

= 2∑ 𝐵𝑖𝑗𝑘
𝑗<𝑘
𝑗+𝑘=𝑚+2−𝑖 +∑ 𝐵𝑖𝑗𝑘

𝑗=𝑘
𝑗+𝑘=𝑚+2−𝑖  =

 

2∑ 𝐵𝑖𝑗𝑘
𝑗<𝑘
𝑗+𝑘=𝑚+2−𝑖 +2(j-i)(j-i+1)𝑏𝑗

2, where 2j=m+2-i, 

so the terms 2(j-i)(j-i+1)𝑏𝑗
2 appear at most for m-i even; so 

½∑ 𝐵𝑖𝑗𝑘𝑗+𝑘=𝑚+2−𝑖  = ∑ 𝐵𝑖𝑗𝑘
𝑗<𝑘
𝑗+𝑘=𝑚+2−𝑖  + 

1

2
∑ 𝐵𝑖𝑗𝑘

𝑗=𝑘
𝑗+𝑘=𝑚+2−𝑖    

dm =  ∑ 𝑎𝑖 ∑ {𝑏𝑗𝑏𝑘[2𝑖(𝑖 − 1) + 6𝑗𝑘 − (𝑗 + 𝑘)(2𝑖 + 𝑗 + 𝑘 − 1)]
𝑗<𝑘
𝑗+𝑘=𝑚+2−𝑖

𝑛
𝑖=0  + 

1+(−1)𝑚−𝑖

2
(j-i)(j-

i+1)𝑏𝑗
2},  so formula (6) is also true. 

 It remains to demonstrate (7): we denote the presumptive numerator by 

∑ 𝑒𝑚𝑥𝑚3(𝑛−1)
𝑚=0  with em = 

∑ (𝑗 − 𝑖)(𝑘 − 𝑗)(𝑘 − 𝑖)|𝑖𝑗𝑘|𝑖<𝑗<𝑘
𝑖+𝑗+𝑘=𝑚+3   and we wish to prove that em is identical to dm from 

formula (6). 

Indeed, making the notation |jk| = 11 −− kj

kj

bb

bb

, and developing the determinant |ijk| after 

the first line we get |ijk| = ai|jk| - aj|ik| + ak|ij| so, noting the products (j-i)(k-j)(k-i) with Πijk, we 

get 

em  = 

 

∑ 𝛱𝑖𝑗𝑘 𝑎𝑖|𝑗𝑘|   
𝑖<𝑗<𝑘
𝑖+𝑗+𝑘=𝑚+3 - ∑ 𝛱𝑖𝑗𝑘 𝑎𝑗|ik|  

𝑗<𝑖<𝑘
𝑖+𝑗+𝑘=𝑚+3

+ 

∑ 𝛱𝑖𝑗𝑘 𝑎𝑘|𝑖𝑗|  
𝑗<𝑘<𝑖
𝑖+𝑗+𝑘=𝑚+3  

then, interchanging in notation j with i in the second sum and bearing in mind that Πjik = 
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- Πijk , and in the third sum making the circular permutation (k→i, i→j, j→k) and since Πkij = Πijk , 

we have

 

em = ∑ 𝛱𝑖𝑗𝑘𝑎𝑖 |jk|
𝑖<𝑗<𝑘
𝑖+𝑗+𝑘=𝑚+3  + ∑ 𝛱𝑖𝑗𝑘𝑎𝑖 |𝑗𝑘|  

𝑗<𝑖<𝑘
𝑖+𝑗+𝑘=𝑚+3 + ∑ 𝛱𝑖𝑗𝑘𝑎𝑖|jk| 

𝑗<𝑘<𝑖
𝑖+𝑗+𝑘=𝑚+3 = 

(the order in which the summation index i is placed relative to j and k is arbitrary) 

= ∑ 𝛱𝑖𝑗𝑘 𝑎𝑖 |jk|  
𝑗<𝑘
𝑖+𝑗+𝑘=𝑚+3  = 

(grouping the terms in ai ai and noting s΄ = m+3-i) =

 

∑ 𝑎𝑖
𝑛
𝑖=0 ∑ 𝐷𝑖𝑗𝑘𝑘+𝑗=𝑠′ , where 

Dijk ≝ ∑ 𝛱𝑖𝑗𝑘 |jk|  
𝑗<𝑘
𝑘+𝑗=𝑠′ = ∑ 𝛱𝑖𝑗𝑘 (𝑏𝑗𝑏

k-1
− 𝑏

j-1
𝑏𝑘)

𝑗<𝑘
𝑘+𝑗=𝑠′  

= ∑ (j-i)(k-j)(k-i)𝑏𝑗𝑏
k-1

𝑗<𝑘
𝑘+𝑗=𝑠′  - ∑ (j-i)(k-j)(k-i)𝑏

j-1
𝑏𝑘

𝑗≤𝑘
𝑘+𝑗=𝑠′ ; 

in order to find and group together similar terms, let's examine the coefficients with which 

they appear in the algebraic sum, substituting in the first sum k =k΄+1, respectively in the second 

sum j = j΄+1. We have 

Dijk =∑ (j-i)(k' + 1-j)(k' + 1-i)𝑏𝑗𝑏k'
𝑗≤𝑘′
𝑖+𝑘′+𝑗=𝑚+2−𝑖 -∑ (j' + 1-i)(k-j'-1)(k-i)𝑏j'𝑏𝑘

𝑗′<𝑘
𝑖+𝑘+𝑗′=𝑚+2−𝑖

 

  

(renoting j΄, k΄ with j respectively with k and factoring bjbk to reduce the like terms two by 

two)    Dijk = ∑ [(j-i)(𝑘 + 1-j)(𝑘 + 1-i) − (𝑗 + 1-i)(k-j-1)(k-i)]𝑏𝑗𝑏𝑘
𝑗<𝑘
𝑗+𝑘=𝑚+2−𝑖  

+(j-i)(j-i+1)𝒃𝒋
𝟐 where 2j=m+2-i, that is, the term in 𝒃𝒋

𝟐 appears at most for m-i even 

number and, doing the calculation in parentheses, we get: Dijk = 

∑ {𝒃𝒋𝒃𝒌
𝒋<𝒌
𝒋+𝒌=𝒎+𝟐−𝒊 [2i(i-1)+6jk – (j+k)(2i+j+k-1] +

𝟏+(−𝟏)𝒎−𝒊

𝟐
(j-i)(j-i+1)𝒃𝒋

𝟐}, so em = dm 

from the proven formula (6), so equality (7) is also true, Q.E.D. 

Derivatives of arbitrary order of the rational functions 
 

Proof of Theorem 2. 
 

We will use the method of complete mathematical induction.  

For t = 1 respectively, we proved formula (9). 

We will deduce the formula of 𝑓𝑛
[𝑡+1]

(x) from that of 𝑓𝑛
[𝑡]

(x) for any t ≥ 1 (8). We have: 

𝑓𝑛
[𝑡+1]

(x) = ( 𝑓𝑛
[𝑡]

)’(x)g(x) – (t+1)𝑓𝑛
[𝑡]

(x)g’(x).   (9) 

We note (𝑖0 − 1 ∙ 𝑖1 − 0)(𝑖0 + 𝑖1 − 2𝑖2 − 1) … (𝑖0 + 𝑖1 + ⋯ + 𝑖𝑡−1 − 𝑡 ∙ 𝑖𝑡 − 𝑡 + 1) with p(t). 

We will calculate the two terms of difference (9) in turn: 

( 𝑓𝑛
[𝑡]

)’(x)g(x) = (∑ ℎ𝑚𝑥𝑚(𝑡+1)𝑛−𝑡−1
𝑚=0 )’g(x) = (∑ 𝑥𝑚(𝑚 + 1)ℎ𝑚+1

(𝑡+1)𝑛−𝑡−2
𝑚=0 )(∑ 𝑏𝑖𝑡+1

𝑥𝑖𝑡+1𝑛
𝑖𝑡+1=0 ) 

= 

= ∑ 𝑥𝑝 ∑ (𝑚 + 1)𝑏𝑖𝑡+1
ℎ𝑚+1𝑚+𝑖𝑡+1=𝑝

(𝑡+2)(𝑛−1)
𝑝=0  = 

= ∑ 𝑥𝑝 ∑ (𝑚 + 1)𝑏𝑖𝑡+1𝑚+𝑖𝑡+1=𝑝
(𝑡+2)(𝑛−1)
𝑝=0 ∑ 𝑎𝑖0

𝑖0,𝑖1,…,𝑖𝑡𝑁
𝑖0+𝑖1+⋯+𝑖𝑡=(𝑚+1)+𝑡 𝑏𝑖1

𝑏𝑖2
… 𝑏𝑖𝑡

𝑝(𝑡) = 

= ∑ 𝑥𝑝 ∑ (𝑖0 + 𝑖1 + ⋯ + 𝑖𝑡 − 𝑡)𝑖0+𝑖1+⋯+𝑖𝑡−𝑡−1+𝑖𝑡+1=𝑝
(𝑡+2)(𝑛−1)
𝑝=0 𝑎𝑖0

𝑏𝑖1
𝑏𝑖2

… 𝑏𝑖𝑡
𝑏𝑖𝑡+1

𝑝(𝑡) = 
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∑ 𝑥𝑝 ∑ 𝑎𝑖0
𝑏𝑖1

𝑏𝑖2
… 𝑏𝑖𝑡

𝑏𝑖𝑡+1
𝑝(𝑡)(𝑖0 + 𝑖1 + ⋯ + 𝑖𝑡 − 𝑡)

𝑖0+𝑖1+⋯+𝑖𝑡+𝑖𝑡+1=𝑝+𝑡+1

(𝑡+2)(𝑛−1)

𝑝=0

(10) 

 
To find out the second term in (9), we calculate 

(t+1)𝑓𝑛
[𝑡]

(x)g’(x) = (t+1)(∑ ℎ𝑚𝑥𝑚(𝑡+1)𝑛−𝑡−1
𝑚=0 )( ∑ (𝑖𝑡+1

′ + 1)𝑏𝑖𝑡+1
′ +1𝑥𝑖𝑡+1

′𝑛−1
𝑖𝑡+1=0 ) = 

=(𝑡 + 1) ∑ 𝑥𝑝 ∑ (𝑖𝑡+1
′ + 1)𝑏𝑖𝑡+1

′ +1𝑚+𝑖𝑡+1=𝑝
(𝑡+2)(𝑛−1)
𝑝=0 ∑ 𝑎𝑖0

𝑖0,𝑖1,…,𝑖𝑡𝑁
𝑖0+𝑖1+⋯+𝑖𝑡=(𝑚+1)+𝑡 𝑏𝑖1

𝑏𝑖2
… 𝑏𝑖𝑡

𝑝(𝑡) = 

(Noting 𝑖𝑡+1
′ + 1 = it+1) 

= ∑ 𝑥𝑝 ∑ (𝑡 + 1)𝑖𝑡+1𝑏𝑖𝑡+1𝑚+𝑖𝑡+1=𝑝
(𝑡+2)(𝑛−1)
𝑝=0 ∑ 𝑎𝑖0

𝑖0,𝑖1,…,𝑖𝑡𝑁
𝑖0+𝑖1+⋯+𝑖𝑡=(𝑚+1)+𝑡 𝑏𝑖1

𝑏𝑖2
… 𝑏𝑖𝑡

𝑝(𝑡) = 

∑ 𝑥𝑝 ∑ 𝑎𝑖0
𝑏𝑖1

𝑏𝑖2
… 𝑏𝑖𝑡

𝑏𝑖𝑡+1
𝑝(𝑡)(𝑡 + 1)𝑖𝑡+1

𝑖0+𝑖1+⋯+𝑖𝑡+𝑖𝑡+1=𝑝+𝑡+1

(𝑡+2)(𝑛−1)

𝑝=0

 

 

From (9) we get: 𝑓𝑛
[𝑡+1]

(x) = 

∑ 𝑥𝑝 ∑ 𝑎𝑖0
𝑏𝑖1

𝑏𝑖2
… 𝑏𝑖𝑡

𝑏𝑖𝑡+1
𝑝(𝑡)[𝑖0 + 𝑖1 + ⋯ + 𝑖𝑡 − 𝑡 − (𝑡 + 1)𝑖𝑡+1

𝑖0+𝑖1+⋯+𝑖𝑡+𝑖𝑡+1=𝑝+𝑡+1

(𝑡+2)(𝑛−1)

𝑝=0

]  

 
 
Proof of Theorem 3. 
 

We first note the proposition "GCD of the numerical coefficients of the polynomial f[t] is 
equal to t!” cu Pt. We will prove it by complete mathematical induction after t. P1 is obvious true 

from the formula for the derivation of a ratio of functions. 
We now assume that for some positive integer t all P1, P2, ..., Pt are true. We shall then 

demonstrate that Pt+1 is also true. 

Lemma 3 tells us the formula (2) for f[t], Ɐ t ϵ ℕ*, a non-identical null polynomial (11) 

from the hypothesis, otherwise r(t)(x) ≡ 0 and r(x) would be a polynomial in x 

so applying Lemma 1 to the t+1 order derivative, we have 

f[t+1] =     (12) 

 
We develop the determinant (10) after the penultimate column and get: 
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f[t+1] = – g(1)f[t] + g , 

 
Then we repeat the above procedure recurrently: we develop after the penultimate column 

the last determinant obtained (algebraic complement of element g) and finally we get: 

f[t+1] = [– g(1)f[t] – g(2)f[t-1]g – g(3)f[t-2]g2 – ... – g(t+1)f[0]gt ] + 

f(t+1)gt+1 = 

-  + f(t+1)gt+1. 

But because from the induction hypothesis and Lemma 3 it follows that the numerical 

coefficients of any term polynomial term of the above sum are divisible by 
(𝑡+1)!

𝑘!(𝑡+1−𝑘)!
 k!(t+1-k)! = 

(t+1)!, We have that all the numerical coefficients of f[t+1] are divisible by (t+1)!. And from the 

induction hypothesis and from (11) the first term of the sum, the polynomial  f[t] g has  the 

GCD of  its numerical coefficients equal to (t+1)!, it follows that any common divisor of the 

numerical coefficients of the polynomial f[t] is a divisor of (t+1)!, so GCD of the numerical 
coefficients of f[t] is precisely (t+1)!; so Pt+1 is true. It follows, by virtue of mathematical induction, 

that Theorem 3 is true. 


