Formulas for derivatives of multiple order of rational functions, with/without determinants of coefficients- Proofs of theorems
 Laurian Colcer

The first two derivatives of rational functions

Proof of Theorem 1.

a) To prove (3) we present the calculation in detail:
$f_{n}^{[1]}(x)=f^{\prime}(x) g(x)-f(x) g^{\prime}(x)=\left(\sum_{j=1}^{n} j a_{j} x^{j-1}\right)\left(\sum_{i=0}^{n} b_{i} x^{i}\right)-\left(\sum_{i=0}^{n} a_{i} x^{i}\right)\left(\sum_{i=1}^{n} j b_{j} x^{j-1}\right)=$
$\sum_{m=0}^{2 n-1} x^{m} \sum_{i+j=m+1} j a_{j} b_{i}-\sum_{m=0}^{2 n-1} x^{m} \sum_{i+j=m+1} j a_{i} b_{j}=\sum_{m=0}^{2 n-1} x^{m} \sum_{i+j=m+1} j\left(a_{j} b_{i}-a_{i} b_{j}\right)=$

$$
\begin{equation*}
\sum_{m=0}^{2 n-1} x^{m} \sum_{i+j=m+1}\left(i a_{i} b_{j}-j a_{i} b_{j}\right) \tag{8}
\end{equation*}
$$

We will reduce like terms that appear in each c_{m}, highlighting the $\langle j i|$ minors of the matrix A_{1} :

$$
c_{m}=\sum_{i+j=m+1}^{j>i} j|j i|+\sum_{i+j=m+1}^{j<i} j|j i|=\sum_{i+j=m+1}^{j>i} j|j i|-\sum_{i+j=m+1}^{j<i} j|i j|=\text { (swapping notations }
$$

for i and $j)=\sum_{i+j=m+1}^{j>i} j|j i|-\sum_{i+j=m+1}^{j>i} i|j i|$, so $c_{m}=\sum_{i+j=m+1}^{j>i}(j-i)|j i|$, Q.E.D.
b) In order to find the form of the numerator $f_{n}^{[2]}(\mathrm{x})$ of the second derivative of the rational function, $r^{\prime \prime}(x)=\frac{f_{n}^{[2]}(x)}{g^{t+1}(x)}$, we are using the formula $f_{n}^{[2]}=$

$$
\left|\begin{array}{ccc}
g & 0 & f \tag{9}\\
g^{\prime} & g & f^{\prime} \\
g^{\prime \prime} & 2 g^{\prime} & f^{\prime \prime}
\end{array}\right|
$$

which can be proved either independently by derivation twice or as a special case for $t=2$ of Lemma 1. All terms below a_{i}, b_{j} and b_{k} with indexes i, j respectively k which are negative or greater than n are zero and the terms with those coefficients are considered zero (regardless of the power to which the indeterminate is raised x).

We notice that from (9) \Rightarrow the degree of the polynomial $f_{n}^{[2]}$ is no greater than $3 n-2$. We have:

$$
f^{\prime}(x)=\sum_{i=0}^{n} i(i-1) a_{i} x^{i-2}, g^{\prime}(x)=\sum_{j=0}^{n} j b_{j} x^{j-1}, g^{\prime \prime}(x)=\sum_{j=0}^{n} j(j-1) b_{j} x^{j-2} .
$$

Using the linearity of the determinant in (9) as a function of columns, we develop it as a sum:

$$
f_{n}^{[2]}(x)=\sum_{i, j, k \in M}\left|\begin{array}{ccc}
b_{j} x^{j} & 0 & a_{i} x^{i} \\
j b_{j} x^{j-1} & b_{k} x^{k} & i a_{i} x^{i-1} \\
j(j-1) b_{j} x^{j-2} & 2 k b_{k} x^{k-1} & i(i-1) a_{i} x^{i-2}
\end{array}\right|=
$$

(giving a common factor across each of the columns, then factoring the powers of x over the lines)

$$
\begin{gathered}
=\sum_{i, j, k \in M} a_{i} b_{j} b_{k} x^{i+j+k-2}\left|\begin{array}{ccc}
1 & 0 & 1 \\
j & 1 & i \\
j(j-1) & 2 k & i(i-1)
\end{array}\right|= \\
=\sum_{i, j, k \in M} a_{i} b_{j} b_{k} x^{i+j+k-2}(i-j)(i+j-2 k-1) .
\end{gathered}
$$

But since the terms for which $i=j$ are zero, we have in the sum $i \neq j$, so $\max (i+j+k-2)=(n-$ 1) $+n+n-2=3 n-3$, thus
making the notation $i+j+k-2=m$, we have

$$
\begin{aligned}
& f_{n}^{[2]}(\mathrm{x})=\sum_{m=0}^{3 n-3} d_{m} x^{m} \text { where } d_{m}= \\
& \sum_{i+j+k=m+2} a_{i} b_{j} b_{k}(i-j)(i+j-2 k-1)
\end{aligned}
$$

which proves the formula (4).

* We note that in the last sum we can interchange b_{j} with b_{k}, so this sum is symmetrical in j and k, so we can write

$$
2 d_{m}=\sum_{i+j+k=m+2} a_{i} b_{j} b_{k}[(i-j)(i+j-2 k-1)+(i-k)(i+k-2 j-1)]=
$$

$$
\sum_{i+j+k=m+2} a_{i} b_{j} b_{k}\left[2 i^{2}-2 i-2 i(j+k)+4 j k+(j+k)-j^{2}-k^{2}\right]=
$$

$$
\left.\sum_{i+j+k=m+2} a_{i} b_{j} b_{k}\{2 i(i-1)+6 j k-(j+k)[2 i+(j+k)-1)]\right\} \quad \Rightarrow
$$

$$
\left.d_{m}=\sum_{i+j+k=m+2} \frac{a_{i} b_{j} b_{k}}{2}\{2 i(i-1)+6 j k-(j+k)[2 i+(j+k)-1)]\right\} \Rightarrow(5) \text { holds. }
$$

To demonstrate (6), we write that (5) $\Rightarrow \quad 2 d_{m}=\sum_{i=0}^{n} a_{i} \sum_{j+k=m+2-i} B_{i j k}$,
where we note $\left.B_{i j k} \stackrel{\text { def }}{=}\{2 i(i-1)+6 j k-(j+k)[2 i+(j+k)-1)]\right\} \mathrm{b}_{\mathrm{j}} \mathrm{b}_{\mathrm{k}}$.
Now since the $B_{i j k}$ terms are obviously symmetric in j and k, we deduce that
$\sum_{j+k=m+2-i} B_{i j k}=\sum_{j+k=m+2-i}^{j<k} B_{i j k}+\sum_{j+k=m+2-i}^{j=k} B_{i j k}+\sum_{j+k=m+2-i}^{j>k} B_{i j k}=$
$=2 \sum_{j+k=m+2-i}^{j<k} B_{i j k}+\sum_{j+k=m+2-i}^{j=k} B_{i j k}=2 \sum_{j+k=m+2-i}^{j<k} B_{i j k}+2(j-i)(j-i+1) b_{j}^{2}$, where $2 j=m+2-i$, so the terms $2(j-i)(j-i+1) b_{j}^{2}$ appear at most for m - i even; so

$$
\begin{aligned}
& 1 / 2 \sum_{j+k=m+2-i} B_{i j k}=\sum_{j+k=m+2-i}^{j<k} B_{i j k}+\frac{1}{2} \sum_{j+k=m+2-i}^{j=k} B_{i j k} \Rightarrow \\
& d_{m}=\sum_{i=0}^{n} a_{i} \sum_{j+k=m+2-i}^{j<k}\left\{b_{j} b_{k}[2 i(i-1)+6 j k-(j+k)(2 i+j+k-1)]+\frac{1+(-1)^{m-i}}{2}(j-i)(j-\right.
\end{aligned}
$$

$\left.i+1) b_{j}^{2}\right\}$,
so formula (6) is also true.
It remains to demonstrate (7): we denote the presumptive numerator by $\sum_{m=0}^{3(n-1)} e_{m} x^{m}$ with $e_{m}=$
$\sum_{i+j+k=m+3}^{i<j<k}(j-i)(k-j)(k-i)|i j k|$ and we wish to prove that e_{m} is identical to d_{m} from formula (6).

Indeed, making the notation $|j k|=\left|\begin{array}{cc}b_{j} & b_{k} \\ b_{j-1} & b_{k-1}\end{array}\right|$, and developing the determinant $|i j k|$ after the first line we get $|i j k|=a_{i}|j k|-a_{j}|i k|+a_{k}|\mathrm{ij}|$ so, noting the products $(j-i)(k-j)(k-i)$ with $\Pi_{i j k}$, we get

$$
e_{m}=\sum_{i+j+k=m+3}^{i<j<k} \Pi_{i j k} a_{i}|j k|-\sum_{i+j+k=m+3}^{j<i<k} \Pi_{i j k} a_{j}|i k| \quad+\quad \sum_{i+j+k=m+3}^{j<k<i} \Pi_{i j k} a_{k}|i j|
$$

then, interchanging in notation j with i in the second sum and bearing in mind that $\Pi_{j i k}=$
$-\Pi_{i j k}$, and in the third sum making the circular permutation $(k \rightarrow i, i \rightarrow j, j \rightarrow k)$ and since $\Pi_{k i j}=\Pi_{i j k}$, we have

$$
e_{m}=\sum_{i+j+k=m+3}^{i<j<k} \Pi_{i j k} a_{i}|j k|+\sum_{i+j+k=m+3}^{j<i<k} \Pi_{i j k} a_{i}|j k|+\sum_{i+j+k=m+3}^{j<k<i} \Pi_{i j k} a_{i}|j k|=
$$

(the order in which the summation index i is placed relative to j and k is arbitrary)

$$
=\sum_{i+j+k=m+3}^{j<k} \Pi_{i j k} a_{i}|j k|=
$$

(grouping the terms in ai a_{i} and noting $s^{\prime}=m+3-i$) $=\sum_{i=0}^{n} a_{i} \sum_{k+j=s^{\prime}} D_{i j k}$, where

$$
\begin{aligned}
& \left.D_{i j k} \underset{=}{\text { def }} \sum_{k+j=s^{\prime}}^{j<k} \Pi_{i j k}\right|_{\mathrm{j} k} \mid=\sum_{k+j=s^{\prime}}^{j<k} \Pi_{i j k}\left(b_{j} b_{k-1}-b_{j-1} b_{k}\right) \\
& =\sum_{k+j=s^{\prime}}^{j<k}(\mathrm{j}-\mathrm{i})(\mathrm{k}-\mathrm{j})(\mathrm{k}-\mathrm{i}) b_{j} b_{\mathrm{k}-1}-\sum_{k+j=s^{\prime}}^{j \leq k}(\mathrm{j}-\mathrm{i})(\mathrm{k}-\mathrm{j})(\mathrm{k}-\mathrm{i}) b_{\mathrm{j}-1} b_{k}
\end{aligned}
$$

in order to find and group together similar terms, let's examine the coefficients with which they appear in the algebraic sum, substituting in the first sum $k=k^{\prime}+1$, respectively in the second sum $j=j^{\prime}+1$. We have

$$
D_{i j k}=\sum_{i+k^{\prime}+j=m+2-i}^{j \leq k^{\prime}}(j-i)\left(k^{\prime}+1-j\right)\left(k^{\prime}+1-i\right) b_{j} b_{\mathrm{k}^{\prime}-2} \sum_{i+k+j^{\prime}=m+2-i}^{j<k}\left(j^{\prime}+1-i\right)\left(k-j^{\prime}-1\right)(k-i) b_{j^{\prime}} b_{k} \Rightarrow
$$

(renoting j^{\prime}, k^{\prime} with j respectively with k and factoring $b_{j} b_{k}$ to reduce the like terms two by

$$
\Rightarrow D_{i j k}=\sum_{j+k=m+2-i}^{j<k}[(j-i)(k+1-j)(k+1-i)-(j+1-i)(k-j-1)(k-i)] b_{j} b_{k}
$$

$+(j-i)(j-i+1) \boldsymbol{b}_{\boldsymbol{j}}^{2}$ where $2 j=m+2-i$, that is, the term in $\boldsymbol{b}_{\boldsymbol{j}}^{2}$ appears at most for m - i even number and, doing the calculation in parentheses, we get: $D_{i j k}=$ $\sum_{j+\boldsymbol{k}=\boldsymbol{m}+2-i}^{j<\boldsymbol{i}}\left\{\boldsymbol{b}_{\boldsymbol{j}} \boldsymbol{b}_{\boldsymbol{k}}\left[2 i(i-1)+6 j k-(j+k)(2 i+j+k-1]+\frac{\mathbf{1 + (- 1) ^ { m - i }}}{2}(j-i)(j-i+1) \boldsymbol{b}_{\boldsymbol{j}}^{2}\right\}\right.$, so $e_{\mathrm{m}}=d_{\mathrm{m}}$ from the proven formula (6), so equality (7) is also true, Q.E.D.

Derivatives of arbitrary order of the rational functions

Proof of Theorem 2.

We will use the method of complete mathematical induction.
For $t=1$ respectively, we proved formula (9).
We will deduce the formula of $f_{n}^{[t+1]}(x)$ from that of $f_{n}^{[t]}(x)$ for any $t \geq 1$ (8). We have:

$$
\begin{equation*}
f_{n}^{[t+1]}(x)=\left(f_{n}^{[t]}\right)^{\prime}(x) g(x)-(\mathrm{t}+1) f_{n}^{[t]}(x) g^{\prime}(x) \tag{9}
\end{equation*}
$$

We note $\left(i_{0}-1 \cdot i_{1}-0\right)\left(i_{0}+i_{1}-2 i_{2}-1\right) \ldots\left(i_{0}+i_{1}+\cdots+i_{t-1}-t \cdot i_{t}-t+1\right)$ with $p(t)$. We will calculate the two terms of difference (9) in turn:

$$
\begin{gathered}
\begin{array}{c}
\left(f_{n}^{[t]}\right)^{\prime}(x) g(x)=\left(\sum_{m=0}^{(t+1) n-t-1} h_{m} x^{m}\right)^{\prime} g(x)= \\
=\left(\sum_{m=0}^{(t+1) n-t-2} x^{m}(m+1) h_{m+1}\right)\left(\sum_{i_{t+1}=0}^{n} b_{i_{t+1}} x^{i_{t+1}}\right) \\
=\sum_{p=0}^{(t+2)(n-1)} x^{p} \sum_{m+i_{t+1}=p}(m+1) b_{i_{t+1}} h_{m+1}= \\
=\sum_{p=0}^{(t+2)(n-1)} x^{p} \sum_{m+i_{t+1}=p}(m+1) b_{i_{t+1}} \sum_{i_{0}+i_{1}+\cdots+i_{t}=(m+1)+t}^{i_{0}, i_{t} \in N} a_{i_{0}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{t}} p(t)= \\
=\sum_{p=0}^{(t+2)(n-1)} x^{p} \sum_{i_{0}+i_{1}+\cdots+i_{t}-t-1+i_{t+1}=p}\left(i_{0}+i_{1}+\cdots+i_{t}-t\right) a_{i_{0}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{t}} b_{i_{t+1}} p(t)=
\end{array} .
\end{gathered}
$$

$$
\begin{equation*}
\sum_{p=0}^{(t+2)(n-1)} x^{p} \sum_{i_{0}+i_{1}+\cdots+i_{t}+i_{t+1}=p+t+1} a_{i_{0}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{t}} b_{i_{t+1}} p(t)\left(i_{0}+i_{1}+\cdots+i_{t}-t\right) \tag{10}
\end{equation*}
$$

To find out the second term in (9), we calculate

$$
\begin{gathered}
(\mathrm{t}+1) f_{n}^{[t]}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})=(\mathrm{t}+1)\left(\sum_{m=0}^{(t+1) n-t-1} h_{m} x^{m}\right)\left(\sum_{i_{t+1}=0}^{n-1}\left(i_{t+1}^{\prime}+1\right) b_{i_{t+1}^{\prime}+1} x^{i_{t+1}^{\prime}}\right)= \\
=(t+1) \sum_{p=0}^{(t+2)(n-1)} x^{p} \sum_{m+i_{t+1}=p}\left(i_{t+1}^{\prime}+1\right) b_{i_{t+1}^{\prime}+1}^{\prime} \sum_{i_{0}+i_{1}, \ldots, i_{1}+\cdots+i_{t}=(m+1)+t}^{i_{i}} a_{i_{0}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{t}} p(t)= \\
\left.\quad \text { (Noting } i_{t+1}^{\prime}+1=\mathrm{i}_{\mathrm{t}+1}^{\prime}\right) \\
=\sum_{p=0}^{(t+2)(n-1)} x^{p} \sum_{m+i_{t+1}=p}(t+1) i_{t+1} b_{i_{t+1}} \sum_{i_{0}+i_{1}+\cdots, i_{t}+i_{t}=(m+1)+t}^{i_{t}, i_{1} \in N} a_{i_{0}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{t}} p(t)= \\
\sum_{p=0}^{(t+2)(n-1)} x^{p} \sum_{i_{0}+i_{1}+\cdots+i_{t}+i_{t+1}=p+t+1} a_{i_{0}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{t}} b_{i_{t+1}} p(t)(t+1) i_{t+1}
\end{gathered}
$$

From (9) we get: $f_{n}^{[t+1]}(x)=$

$$
\sum_{p=0}^{(t+2)(n-1)} x^{p} \sum_{i_{0}+i_{1}+\cdots+i_{t}+i_{t+1}=p+t+1} a_{i_{0}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{t}} b_{i_{t+1}} p(t)\left[i_{0}+i_{1}+\cdots+i_{t}-t-(t+1) i_{t+1}\right]
$$

Proof of Theorem 3.

We first note the proposition "GCD of the numerical coefficients of the polynomial $f^{f t]}$ is equal to t !" cu P_{t}. We will prove it by complete mathematical induction after $t . P_{1}$ is obvious true from the formula for the derivation of a ratio of functions.

We now assume that for some positive integer t all $P_{1}, P_{2}, \ldots, P_{t}$ are true. We shall then demonstrate that $\mathrm{P}_{\mathrm{t}+1}$ is also true.

Lemma 3 tells us the formula (2) for $f^{[t]}, \forall t \in \mathbb{N}^{*}$, a non-identical null polynomial (11) from the hypothesis, otherwise $r^{(t)}(x) \equiv 0$ and $r(\mathrm{x})$ would be a polynomial in x so applying Lemma 1 to the $t+1$ order derivative, we have
$\left.\begin{array}{|ccccccc|}g & 0 & 0 & \ldots & 0 & 0 & f \\ g^{\prime} & g & 0 & \ldots & 0 & 0 & f^{\prime} \\ g^{\prime \prime} & 2 g^{\prime} & g^{\prime} & \ldots & 0 & 0 & f^{\prime \prime} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ g^{(t-1)} & \binom{t-1}{1} g^{(t-2)} & \binom{t-1}{2} g^{(t-3)} & \ldots & g & 0 & f^{(t-1)} \\ g^{(t)} & \binom{t}{1} g^{(t-1)} & \binom{t}{2} g^{(t-2)} & \ldots & \binom{t}{t-1} g^{(1)} & g & f^{(t)} \\ g^{(t+1)} & \binom{t+1}{1} g^{(t)} & \binom{t+1}{2} g^{(t-1)} & \ldots & \binom{t+1}{t-1} g^{(2)}\binom{t+1}{t} g^{(1)} & f^{(t+1)}\end{array} \right\rvert\,$
We develop the determinant (10) after the penultimate column and get:

$$
f^{[t+1]}=-\binom{t+1}{1} g^{(1)} f^{t t]}+g\left|\begin{array}{cccccc}
g & 0 & \cdots & 0 & 0 & f \\
g^{\prime} & g & \cdots & 0 & 0 & f^{\prime} \\
\cdots & \ldots & \cdots & \cdots & \cdots & \cdots \\
g^{(t-2)}\binom{t-2}{1} g^{(t-3)} & \cdots & g & 0 & f^{(t-2)} \\
g^{(t-1)}\binom{t-1}{1} g^{(t-2)} & \cdots\binom{t-1}{t-2} g^{(1)} & g & f^{(t-1)} \\
g^{(t+1)} & \binom{t+1}{1} g^{(t)} & \cdots\binom{t+1}{t-2} g^{(3)}\binom{t+1}{t-1} g^{(2)} & f^{(t+1)}
\end{array}\right|
$$

Then we repeat the above procedure recurrently: we develop after the penultimate column the last determinant obtained (algebraic complement of element g) and finally we get:

$$
f^{[t+1]}=\left[-\binom{t+1}{1} g^{(1) f(t]}-\binom{t+1}{2} g^{(2) f(t-1]} g-\binom{t+1}{3} g^{(3) f t-2]} g^{2}-\ldots-\binom{t+1}{t+1} g^{(t+1) f(0]} g^{t}\right]+
$$ $f^{(t+1)} g^{t+1}=$

$$
-\sum_{k=1}^{t+1}\binom{t+1}{k} g^{(k)} f^{[t+1-k]} g^{k-1}+f^{(t+1)} g^{t+1}
$$

But because from the induction hypothesis and Lemma 3 it follows that the numerical coefficients of any term polynomial term of the above sum are divisible by $\frac{(t+1)!}{k!(t+1-k)!} k!(t+1-k)!=$ $(t+1)!$, We have that all the numerical coefficients of $f^{f+1]}$ are divisible by $(t+1)!$. And from the induction hypothesis and from (11) the first term of the sum, the polynomial $\binom{t+1}{1} f^{[t]} g$ has the GCD of its numerical coefficients equal to ($t+1$)!, it follows that any common divisor of the numerical coefficients of the polynomial $f^{t t]}$ is a divisor of $(t+1)$!, so GCD of the numerical coefficients of $f^{t]}$ is precisely $(t+1)$!; so P_{t+1} is true. It follows, by virtue of mathematical induction, that Theorem 3 is true.

